The Fell-Heisenberg Drive

June 28, 2023

1 Fell-Heisenberg Ansatz

In 2021, physicists Shaun Fell and Lavinia Heisenberg considered a time-like foliation of spacetime which satisifies the Alcubierre conditions

- The space-like hypersurfaces are intrinsically flat.
- The chosen coordinate system on the space-like hypersurfaces is Cartesian, with coordinates (x, y, z)
- The lapse function is given by N = 1

but wherein the shift vector is different.

1.1 Fell-Heisenberg Parameters

There is a pair of quantities appearing the F-H paper, which I call q_+ and q_- , that are defined as follows:

$$q_{\pm} := \frac{\rho \pm \frac{r^{2P}}{w_{\pm}(x,y,z)}}{\sqrt{\sigma}} \tag{1}$$

where r is a variable giving radial distance from the origin of the Cartesian coordinate system, i.e.

$$r = \sqrt{x^2 + y^2 + z^2}$$
(2)

and

- P is a constant parameter, restricted to the half-open interval (0, 0.5].
- ρ and σ are constant parameters, to be redefined shortly.
- w_+ and w_- are arbitrary, smooth functions of the Cartesian coordinates.

It will be easier to understand (1), if the parameters ρ and σ are recast in terms of the Alcubierre parameters R and D. Recall that, in Alcubierre:

- R the radial distance to the midpoint of the spherical shell, centered at the origin.
- D is roughly half the thickness of that shell.

Specifically, define

$$\rho := R^{2P} \tag{3}$$

$$\sigma := D^{4P} \tag{4}$$

Then, (1) can be rewritten as

$$q_{\pm} = \frac{R^{2P} \pm \frac{r^{2P}}{w_{\pm}}}{D^{2P}}$$
(5)

Now, if $w_+ = w_- = 1$ and P = 1/2, then (5) reduces to

$$q_{\pm} = \frac{R \pm r}{D} \tag{6}$$

which is equivalent to the definitions of r_+ and r_- , respectively, in the Alcubierre ansatz. Thus (5) can be seen as a generalization of (6), with the latter as a limiting case. It will be seen that, despite a significant difference in shift vectors, the F-H ansatz, gives rise to a spherical shell that contains the bulk of the non-zero energy density, spacetime curvature and expansion factor, where the radius and thickness of the shell is controlled via R and D, respectively.

1.2 Fell-Heisenberg Shift Vector Potential

Unlike Alcubierre, the F-H paper does not specify a shift vector directly. Instead, it specifies a scalar field ϕ (over the hypersurfaces), whose gradient is the shift vector. This *shift vector potential* is given (in terms of the recast parameters) by

$$\phi = S \frac{w_+ w_-}{w_+ + w_-} D^{4P} \left\{ \Sigma_1 + \sqrt{\pi} \Sigma_2 \right\}$$
(7)

where S is an additional parameter providing an overall scale, and where Σ_1 and Σ_2 are given by

$$\Sigma_1 = \exp\left(-q_-^2\right) + \exp\left(-q_+^2\right) \tag{8}$$

$$\Sigma_2 = q_{-}\mathrm{erf}\left(q_{-}\right) + q_{+}\mathrm{erf}\left(q_{+}\right) \tag{9}$$

where exp and erf are the exponential and error functions, respectively, and q_{-} and q_{+} are given by (5).

1.2.1 The Spherically Symmetric Case

It turns out that if $w_+ = w_- = 1$, the shell is spherically symmetric. Also, since S is arbitrary, we can conveniently absorb the constants in (7) into S and set it to 1. That is, we may write

$$\phi = \Sigma_1 + \sqrt{\pi}\Sigma_2. \tag{10}$$

Then, when the shift vector is obtained by taking the gradient of (10), i.e.

$$N_i = \frac{\partial \phi}{\partial x^i} = \frac{\partial \Sigma_1}{\partial x_i} + \sqrt{\pi} \frac{\partial \Sigma_2}{\partial x_i},\tag{11}$$

we obtain (after much algebra) the form

$$N_i = x_i r^{2P-2} \Delta \tag{12}$$

where

$$\Delta = \operatorname{erf}\left(q_{+}\right) - \operatorname{erf}\left(q_{-}\right). \tag{13}$$

Note that, given N_i , the extrinsic curvature tensor K_{**} and therefore the expansion factor and the Eulerian energy density can be computed as shown in the preceding talk.

1.3 Results for the Spherically Symmetric Case

1.3.1 Shift Vector

 N_x cross-section at z = 0, with P = 0.5, D = 10, R = 100

Corresponding embedding diagram

Note that: as $x \to \pm \infty, N_x \to \pm 2$.

 N_x cross-section at z = 0, with P = 0.25, D = 0.5, R = 100

Corresponding embedding diagram

Note that: as $x \to \pm \infty, N_x \to 0$

1.3.2 Energy Density

Eulerian energy density cross-section at z = 0, with P = 0.5, D = 10, R = 100

Corresponding embedding diagram

Note that:

• Distribution of energy density is spherically symmetric.

- The bulk of the energy is within the spherical shell at r = 100.
- There is, however, a non-zero energy density outside the shell, that tapers off as $r \to \infty$.
- The region enclosed by the shell has essentially zero energy density.

Eulerian energy density cross-section at z = 0, with P = 0.25, D = 0.5, R = 100

Note that: the energy density is confined within the shell.

Principle energy density cross-section at z = 0, with P = 0.25, D = 0.5, R = 100

Principle energy density for xy-Plane at Offset 0

Note that: the principal energy density is identical to the Eulerian energy density.

Minimum principal pressure at z = 0, with P = 0.25, D = 0.5, R = 100

- The bulk of the non-zero (negative) pressure resides in the spherical shell at r = R = 100.
- There is a faint (negative) secondary shell just outside the first.
- There is an extremely faint (positive) tertiary shell outside the second.
- The region enclosed by the primary shell has essentially zero pressure.
- The maximum magnitude of the minimum principal pressure is about four times that of maximum principal energy density.

Sum of principal energy density and minimum principle pressure

Item Comparison for xy-plane at offset 0

Note that:

- There is a faint net positive shell at r > R.
- There is a net negative shell at r = R, i.e. a region where $p + \rho < 0$.
- This means that the WEC is violated (despite the 1st bullit).

1.3.3 Expansion Factor

Expansion factor cross-section at z = 0, with P = 0.25, D = 0.5, R = 100

Note that:

- The bulk of the non-zero expansion resides in a spherical shell at r = R.
- There is, however, a non-zero expansion outside the shell, that tapers off as $r \to \infty$.
- The expansion is spherically symmetric.
- This means that there is no movement.