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We digress into cosmology for the following reasons:

• Certain facts from cosmology spawned research into warp drive.

• Cosmology provides a relatively simple example of a conventional GR application.

• Such an example provides an excellent opportunity to review previously covered concepts.

• It is possible to put the standard cosmological model into a form that satisfies the Alcubierre constraints.

1 The Robertson-Walker (RW) Cosmological Model

1.1 Time-Like Foliation of the Universe
The starting point for the RW model is a time-like foliation of spactime.

Properties (review)

• Coordinate time t increases from right to left.

• At each time t, there is a space-like hypersurface Σt (disks: 1 spatial dimension is supressed).
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• Each space-like hypersurface is a snapshot of all of space at time t.

• There is a family of time-like curves (red), which never intersect.

• Each time-like curve passes through each hypersurface only once.

• The unit normal vector n to any hypersurface at any point p is tangent to time-like curve passing through p,
i.e. the time-like curves are everywhere orthogonal to the hypersurfaces.

• Each unit tangent vector (or normal vector) lies within its local light cone;
otherwise the red curves would not be time-like.

• The unit tangent vector field is also the 4-velocity of a family of observers moving along the time-like curves;
In the literature these are called “Eulerian” observers.

1.2 Fundamental Observers (a Special Case)
The RW model considers a special family of observers called “fundamental” observers. We may describe these observers in
two ways:

• Physically, these are observers at rest with respect to the cosmic microwave background (CMB).
Observers at galactic centers (if there were any) would be a very good approximation to the fundamental observers.
Even observers on Earth are a pretty good approximation to the fundamental observers.

• Mathematically, the spatial coordinates xi, i = 1, 2, 3 of the fundamental observers do not change with time, i.e. from
one hypersurface to the next.
To visualize this, consider the general case

and let xi(t+ dt) = xi(t) for all t. Therefore,

– The shift vector (β in the figure) is zero.

– The lapse function (α in the figure) is one, i.e. dτ/dt=1
(because the fundamental observers are at rest).

• It is also important to note that the tangent vector nµ to the world lines (or equivalently the 4-velocity) of the
fundamental observers is given by (

n0, n1, n2, n3
)

= (1, 0, 0, 0) (1)

One way to show this is to recall that, in the 3+1 formalism, the tangent vector (or 4-velocity) is given in all generality
by (

n0, n1, n2, n3
)

=
1

N

(
1,−N1,−N2,−N3

)
(2)

where N is the lapse function and N i, i = 1, 2, 3 are the components of the shift vector in the notation originally
introduced by Arnowitz, Deser and Misner (ADM). Clearly, if N = 1 and N i = 0 for all i, then (2) reduces to (1).
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1.3 The Geometry of the Space-Like Hypersurfaces
To fix the geometry of the hypersurfaces, we must settle on a metric for those hypersurfaces. The following is a step-by-step
procedure by which we arrive at an appropriate metric.

1.3.1 The Cosmological Principle

The search for the appropriate metric begins with astronomical observations. Over many decades, it has become increasingly
clear that on scales larger that about 100 million light years the Universe is:

• Spatially Homogenious - conditions (e.g. energy density) are the same at every point in space.

• Spatially Isotropic - at every point in space, space looks the same in every direction.

Over the decades, increasingly numerous and increasingly precise observations have elevated these finding from a hypothesis
to a principle - the cosmological principle.

1.3.2 Mathematical Implications of the Cosmological Principle

The cosmological principle implies that each space-like hypersurface Σt is homogeneous and isotropic. Mathematical impli-
cations:

• Homogeneity - the metric on Σt must be invariant under 3-dimensional translations.

• Isotropy - the metric on Σt must be invariant under 3-dimensional rotations.

• Transformations that leave the metric unchanged are called isometries.

• Σt has 6 isometries: 3 translations and 3 rotations.

1.3.3 Ramifications of Six Isometries on Σt

For any (pseudo)Riemannian manifold:

• The maximum possible number I#,max of isometries is equal to the number C# of independent components of any
rank-2, symmetric tensor,
i.e. C# = n(n+ 1)/2, where n is the dimension of the manifold.

• Thus, for spacetime I#,max = 10, but for the hypersurfaces I#,max = 6.

• The actual number of isometries I# may be anywhere in the range 0 ≤ I# ≤ I#,max.

• A manifold is maximally symmetric if I# = I#,max.

• For the space-like hypersurfaces Σt, I# = I#,max = 6, so the Σt are maximally symmetric.

1.3.4 Ramifications of Maximal Symmetry

There are two important results related to maximally symmetric spaces:

• Theorem:

– Let M be a manifold of dimension n that can be decomposed into
∗ a family Uα of maximally symmetric subspaces of M , of dimension m < n, and
∗ a family Vα of subspaces orthogoanl to the subspaces Uα of dimension n−m.

– Then the metric on M , i.e.
ds2 = gab (x∗) dxadxb (3)

can be written as the sum of two terms, i.e.

ds2 = h̄ab (v) dvadvb + f (v)hij (u) duiduj (4)

where
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∗ theh̄ab are the metric tensor components on the family Vα, functions of the coordinates va, a = 1, ..., n−m on
Vα.

∗ the hij are the metric tensor components on the family Uα, functions of the coordinates ui, i = m + 1, ..., n
on Uα.

∗ f (v) is a scalar-valued function of the coordinates va.

– This theorem applies directly to the spacetime described above because

∗ The Σt are a family maximally symmetric subspaces (like Uα).
∗ The time-like curves are a family of subspaces, orthogonal to the family Σt (like Vα).

• Simplification of the Riemann tensor

– If a Riemannian manifold is maximally symmetric, it can be shown that the Riemann tensor simplifies to

Rabcd = K̄ (gcbgad − gdbgac) (5)

where K̄ is a constant.
NOTE: in general, the Riemann tensor components depend on the 1st and 2nd partial derivatives of the metric
tensor components.

– It can then be shown that the Ricci scalar simplifies to

R = −n(n− 1)K̄ (6)

where n is the dimension of the manifold.

– Therefore, for the spacelike hypersurfaces Σt,
R = −6K̄. (7)

Note: R is actually the trace of the mixed Ricci tensor, which in this case is the following diagonal matrix −2K̄ 0 0
0 −2K̄ 0
0 0 −2K̄


where the diagonal elements are identical sectional curvatures of 3 independent, 2-dimensional submanifolds (sur-
faces), and K̄ is the Gaussian curvature of these surfaces.

• From the preceding discussion, we see that maximally symmetric spaces are spaces of constant curvature, and that the
hypersurfaces Σt, in particular, are 3-dimensional spaces of constant curvature.
NOTE: in retrospect, the Σt could be nothing other than spaces of constant curvature; otherwise, they would not satisfy
the original premise that they are homogeneous and isotropic.

1.3.5 Ramifications of Constant Curvature

There are only three possible geometries for spaces of constant curvature, as shown in the table below, for all Σt:

K̄ Symbol Description
+ S3 Spherical 3-space
0 R3 Euclidean 3-space
− H3 Hyperbolic 3-space

so the Σt must have one of these three geometries. The metric for each of these possibilities is fully determined, once
an appropriate choice is made for the coordinates system, i.e. 3-dimensional spherical, Cartesian, or hyperbolic coordinates,
respectively.

4



1.4 The Robertson-Walker Metric
Referring to (4) in Section 1.3.4:

• The Vα are 1-dimensional subspaces, so h̄ab collapses to just 1 function of one coordinate, which is the proper time τ ,
and thus the expression h̄ab (v) dvadvb collapses to

h̄ (τ) dτ2 = g00dτ
2 = −n20dτ2 = −1dτ2 (in natural units). (8)

• The Uα are identified with the space-like hypersurfaces Σt, and therefore the expression f (v)hij (u) duiduj takes one
of three forms

f (τ)


metric for S3in spherical coordinates
metric for R3in Cartesian coordinates
metric for H3in hyperbolic coordinates

(9)

• Also, it will be convenient to define
a(τ) :=

√
f(τ) (10)

From this point forward, we will restrict our attention to the Euclidean case K̄ = 0, for two reasons:

• Observations seem to indicate that this is actually the case for our Universe.

• This case is most easily transformed to an Alcubierre-like spacetime.

Combining (8), (9 for K̄ = 0) and (10), the FW metric takes the form

ds2 = −dτ2 + a2(τ)
{
dx2 + dy2 + dz2

}
(11)

and thus the corresponding metric tensor is given in matrix form by

[g∗∗] =


−1 0 0 0
0 a2(τ) 0 0
0 0 a2(τ) 0
0 0 0 a2(τ)

 . (12)

Now that we have the metric tensor we can obtain the form of the cotangent vectors, i.e.

[n∗] =


−1 0 0 0
0 a2(τ) 0 0
0 0 a2(τ) 0
0 0 0 a2(τ)




1
0
0
0

 =


−1
0
0
0

 (13)

In other words, n0 = −n0 and all other components of both forms of the vector are zero.

1.5 Stress-Energy Tensor for the Robertson-Walker Model
The most general form of the stress-energy tensor, consistent with the cosmological principle, is given by

Tµν = ρ(τ)nµnν + P (τ)(gµν + nµnν). (14)

where ρ is energy density and P is radiation pressure. Note that n0n0 = 1 and all other components of nµnν are zero, so the
matrix form of the stress-energy tensor is

[T∗∗] =


ρ(τ) 0 0 0

0 a2(τ)P (τ) 0 0
0 0 a2(τ)P (τ) 0
0 0 0 a2(τ)P (τ)

 . (15)
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1.6 Determining the Unknown Function a

We see from (12) and (15) that, respectively, the RW metric and corresponding stress-energy tensor each contain an unknown
function a(τ). To determine this function, we turn to Einstein’s field equations, i.e.

Gµν = kTµν (16)

where

k = 8π (in natural units) (17)

k =
8πG

c4
(in SI units) (18)

where G is Newton’s gravitational constant. There is quite a bit of work to do to obtain the LHS of (16), or Maxima can be
used to obtain

[G∗∗] =


3 ȧ

2

a2 0 0 0
0 −ȧ2 − 2aä 0 0
0 0 −ȧ2 − 2aä 0
0 0 0 −ȧ2 − 2aä

 (19)

where ȧ = da/dτ and ä = d2a/dτ2, i.e. the 1st and 2nd derivatives of a w.r.t τ , respectively. Now, substituting (19) and
(15) into (16), Einstein’s equations for the Robertson-Walker model can be written in matrix form, i.e.

3 ȧ
2

a2 0 0 0
0 −ȧ2 − 2aä 0 0
0 0 −ȧ2 − 2aä 0
0 0 0 −ȧ2 − 2aä

 = k


ρ(τ) 0 0 0

0 a2(τ)P (τ) 0 0
0 0 a2(τ)P (τ) 0
0 0 0 a2(τ)P (τ)

 (20)

which makes it clear that we have two independent equations.

3
ȧ2(τ)

a2(τ)
= kρ(τ) (21)

or

ρ(τ) = 3
1

k

ȧ2(τ)

a2(τ)
(22)

and

−ȧ2 − 2a(τ)ä(τ) = ka2(τ)P (τ) (23)

or

P (τ) = −1

k

(
ȧ2(τ)

a2(τ)
+ 2

ä(τ)

a(τ)

)
(24)

NOTE: the preceding discussion illustrates how it becomes practical to solve the Einstein equations after take advantage of
symmetries; the general problem of determining ten functions of all four coordinates has been reduced to determining one
function of one coordinate, by solving ODEs, instead a coupled system of PDEs.

Units analysis for (22) In SI units, the temporal component of the normal vector is n0 = c, so a0 = −c. Then according
to (8), g00 = −c2, rather than -1, and according to (14), T00 = ρc2, rather than just ρ. As a consequence of the modified g00,
Maxima yields G00 = 3

c2
ȧ2

a2 .Therefore, with k given by (18), in SI units (22) becomes
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ρ(τ)c2 =
3

c2
c4

8πG

ȧ2(τ)

a2(τ)
(25)

ρ(τ) =
3

8π
G−1 ȧ

2(τ)

a2(τ)
(26)

Now, the SI units of Gare

N ·m2

kg2
=

(
kg ·m/s2

)
m2

kg2
=

m3

kg · s2
(27)

and a(τ) is dimensionless and therefore ȧ(τ) has dimension 1/sec in SI units. Thus, the SI units of (26) are(
m3

kg · s2

)−1

· 1

s2
=
kg · s2

m3
· 1

s2
=

kg

m3
. (28)

Thus, we have mass density.

1.7 Results
In solving equations (21) and (23), cosmologists make a further simplification for the present-day universe, by assuming that
the radiation pressure is negligible. We will not go through the details of finding the solution here, but the result is

a(τ) = Cτ2/3 (29)

where C is a constant that has to be determined by observations. Here is a plot of (29), assuming the C = 1.

We see that the expansion continues forever.

1.7.1 The Hubble Parameter

Let r be the distance between any two points on any space-like hypersurface. Then

v =
dr

dτ
=
dr

da

da

dτ
=
r

a

da

dτ
=
r

a
ȧ =

ȧ

a
r (30)

and we define H(τ) := ȧ
a as the Hubble parameter (also called the Hubble constant), and then (30) expresses Hubble’s law,

i.e.
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v = H(τ)r (31)

That is, at any given time τ , the recessional velocity v is proportional to the separatioin distance r, where the Hubble
parameter H(τ) at time τ is the proportionality constant. The current best estimate (via WMAP) of the present-day Hubble
parameter is

H0 ≈ 73.8 ± 2.4 (km/s)/Mpc
H0 ≈ 22 (km/s) per million light-years

1 Mpc ≈ 3.09 × 1019 km

The Hubble radius rH defines a sphere, centered at any fundamental observer, beyond which galaxies are receding faster than
light. To find this, we simply set v = c in (31) and solve for r, using the best estimate of H0, yielding

rH ≈ 13.6 billion light years.

By comparison, it can be shown that (for the flat case K̄ = 0) the furthest a fundamental observer can see, which is called
the particle horizon rp (also called the cosmological horizon), has a present-day value given by rp,0 = 3cτ0, where τ0 is the
present-day value of the Hubble time, i.e. τ0 = 1/H0 ≈ 13.3 billion years. Using the fact that c = 1Ly/yr, we arrive at

rp,0 ≈ 40 billion light years.

Thus, the majority of galaxies that we can see are receding from us faster than light. This is the inspiration behind the idea
of warp drive.

Next Time:
Converting Robertson-Walker spacetime into a spacetime that satisfies the Alcubierre conditions.

8


