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After reviewing Robsertson-Walker cosmology (as discussed last time), we will discuss the following:

• Status of the energy conditions in RW spacetime (with K̄ = 0, i.e. flat space-like hypersurfaces ).

• Working backwards from RW geometry.

• Transformation to coordinates, such that the Alcubierre conditions are satisfied.

1 Review of RW Cosmology for K̄ = 0

The Robertson-Walker metric for the flat, space-like hypersurfaces is given by

ds2 = −dτ2 + a2(τ)
{
dx2 + dy2 + dz2

}
(1)

where a(τ) is a scalar-valued function of the cosmic time τ , i.e. time as measured by the fundamental observers. The
corresponding metric tensor is therefore given by

[g∗∗] =


−1 0 0 0
0 a2(τ) 0 0
0 0 a2(τ) 0
0 0 0 a2(τ)

 . (2)

Then, using the metric tensor (2) as input to the standard algorithm (talk 3), i.e.

g∗∗

{
inv→ g∗∗

dif→ ∂∗g∗∗

}
(14)→ Γ∗∗∗

dif→ ∂∗Γ
∗
∗∗{

Γ∗∗∗
∂∗Γ

∗
∗∗

}
(13)→ R∗∗{

g∗∗

R∗∗

}
raise→ R∗∗

tr→ R

 R∗∗
R
g∗∗

 (2)→ G∗∗

we obtain (via Maxima) the Einstein tensor G∗∗. which (in matrix form) turns out to be

[G∗∗] =


3 ȧ

2

a2 0 0 0
0 −ȧ2 − 2aä 0 0
0 0 −ȧ2 − 2aä 0
0 0 0 −ȧ2 − 2aä

 (3)
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NOTE: the standard algorithm tells us that the Einstein tensor must depend on the functions defined in the metric tensor,
along with their 1st and 2nd derivatives; In talk 3, we used the algorithm to obtain the Einstein tensor for a fully-defined
metric tensor (no unknown functions), and thus obtained a fully-defined Einstein tensor; however, here we have an unknown
function in the metric tensor, so the algorithm produces an Einstein tensor in which the 1st and 2nd derivatives of that
unknown function are also unknown.

Independent of all the preceding considerations, the most general form of the stress-energy tensor, consistent with the
cosmological principle is given by

Tµν = ρ(τ)nµnν + P (τ)(gµν + nµnν). (4)

where ρ(τ) and P (τ) are, respectively, the matter density and radiation pressure at time τ and nµ is the covariant form of
the normal vector to the hypersurfaces (or equivalently the tangent vector to the world lines of the fundamental observers.
The corresponding matrix form of is given by

[T∗∗] =


ρ(τ) 0 0 0

0 a2(τ)P (τ) 0 0
0 0 a2(τ)P (τ) 0
0 0 0 a2(τ)P (τ)

 . (5)

Then, from Einstein’s field equation

[G∗∗] = k [T∗∗] (6)

or specifically
3 ȧ

2

a2 0 0 0
0 −ȧ2 − 2aä 0 0
0 0 −ȧ2 − 2aä 0
0 0 0 −ȧ2 − 2aä

 = k


ρ(τ) 0 0 0

0 a2(τ)P (τ) 0 0
0 0 a2(τ)P (τ) 0
0 0 0 a2(τ)P (τ)

 (7)

we have two ordinary differential equations, i.e.

3
ȧ2

a2
= kρ (8)

and

−ȧ2 − 2aä = ka2P. (9)

A solution to these equations (presented last time), applicable to the present-day universe (under the assumption P = 0), is
given by

a(τ) = C1τ
2/3. (10)

We will also make use of a solution (not presented last time), applicable to the very early universe (under the assumption
P = ρ/3), given by

a(τ) = C2τ
1/2. (11)

respectively.

2 Energy Conditions in RW Cosmology

2.1 Review of Energy Conditions for Hawking-Ellis Type I
It will be seen shortly that the mixed energy tensor for the RW cosmology is H-E Type I, which means the matrix [T ∗∗] has

• Four, mutually-independent eigenvectors: 1 time-like and 3 space-like.

• Four real eigenvalues with the following physical interpretation:
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– The principal energy density is given by ρ̂ = −λ0,
where λ0 is the eigenvalue belonging to the time-like eigenvector.

– The principal pressures are given by P̂i = λi, i = 1, 2, 3,
where λi, i = 1, 2, 3 are the eigenvalues belonging to the space-like eigenvectors.

The table below provides the requirements to satisfy the energy condtions for H-E Type I, in terms of the eigenvalues of [T ∗∗]
and also the principal, physical quantities those eigenvalues represent, as defined above.

Table I: Energy Conditions for H-E Type I
Energy Conditions Requirements (in terms of eigenvalues) Requirements (in terms of Principals)

Null Energy Condition (NEC) −λ0 + λi ≥ 0, i = 1, 2, 3 ρ̂+ P̂i ≥ 0, i = 1, 2, 3
Weak Energy Condition (WEC) NEC satisfied and −λ0 ≥ 0, i = 1, 2, 3 NEC satisified and ρ̂ ≥ 0, i = 1, 2, 3

Strong Energy Condition (SEC) NEC satisfied and −λ0 +
∑3
i=1 λi ≥ 0 NEC satisfied and ρ̂+

∑3
i=1 P̂i ≥ 0

2.2 Application to RW Cosmology
In general, a mixed, rank-2 tensor is obtained by raising an index of a fully-covariant form. (Recall from talk 1 that raising
an index is done using the contravariant form of the metric tensor.) Applying this concept to the stress-energy tensor, we
have

Tµv = gµaTaν (12)

or in matrix form (12) is written as

[T ∗∗] = [g∗∗]
−1

[T∗∗] . (13)

(Recall from talk 1 that the contravariant metric tensor is the matrix inverse of the covariant metric tensor, i.e. [g∗∗] :=

[g∗∗]
−1.) Now, we apply this to the RW stress-energy tensor, by substituting (2) and (5) into (13), yielding

[T ∗∗] =


−1 0 0 0
0 a2(τ) 0 0
0 0 a2(τ) 0
0 0 0 a2(τ)


−1 

ρ(τ) 0 0 0
0 a2(τ)P (τ) 0 0
0 0 a2(τ)P (τ) 0
0 0 0 a2(τ)P (τ)



=


−1 0 0 0
0 a−2(τ) 0 0
0 0 a−2(τ) 0
0 0 0 a−2(τ)



ρ(τ) 0 0 0

0 a2(τ)P (τ) 0 0
0 0 a2(τ)P (τ) 0
0 0 0 a2(τ)P (τ)



=


−ρ(τ) 0 0 0

0 P (τ) 0 0
0 0 P (τ) 0
0 0 0 P (τ)

 . (14)

Now, the fact that [T ∗∗] is diagonal implies that

• The diagonal elements are the eigenvalues, and they are obviously real.

• The matrix whose columns are the eigenvectors is the 4× 4 identity matrix,
i.e. 4 mutually independent eigenvectors.

Therefore, [T ∗∗] is H-E Type I, which means we can apply Table I. Before doing so, note that:

• The principle quantities are, respectively, the same as those seen by the fundamental observers.

• Fundamental observers (such as ourselves) see only non-negative matter density and radiation pressure.

Thus, according to Table I, the energy conditions are satisfied.
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Important note: In general, it is not true that the principle quantities are the same as those corresponding to the original
frame in which the stress-energy tensor is calculated.

3 Working Backwards

3.1 Working Backwards in Part
Suppose we have the Einstein tensor, as derived from the RW metric, containing the unknown functions a, ȧ and ä, but no
model for the stress-energy tensor. We can still determine the status of the energy conditions. First, we obtain the mixed
Einstein tensor, in a manner analogous to (13), i.e.

[G∗∗] = [g∗∗]
−1

[G∗∗] . (15)

Substituting (2) and (3) into (15) yields

[G∗∗] =


−1 0 0 0
0 a2(τ) 0 0
0 0 a2(τ) 0
0 0 0 a2(τ)


−1 

3 ȧ
2

a2 0 0 0
0 −ȧ2 − 2aä 0 0
0 0 −ȧ2 − 2aä 0
0 0 0 −ȧ2 − 2aä



=


−1 0 0 0
0 a−2(τ) 0 0
0 0 a−2(τ) 0
0 0 0 a−2(τ)




3 ȧ
2

a2 0 0 0
0 −ȧ2 − 2aä 0 0
0 0 −ȧ2 − 2aä 0
0 0 0 −ȧ2 − 2aä



=


−3 ȧ

2

a2 0 0 0

0 − ȧ
2

a2 − 2 äa 0 0

0 0 − ȧ
2

a2 − 2 äa 0

0 0 0 − ȧ
2

a2 − 2 äa

 . (16)

Once again, we have a mixed tensor that is diagonal, so the diagonal elements are the eigenvalues. Then, from Einstein’s
field equations, we have

[T ∗∗] =
1

k
[G∗∗]

=
1

k


−3 ȧ

2

a2 0 0 0

0 − ȧ
2

a2 − 2 äa 0 0

0 0 − ȧ
2

a2 − 2 äa 0

0 0 0 − ȧ
2

a2 − 2 äa

 . (17)

so the principal quantities are given by

ρ̂ =
1

k
3
ȧ2

a2
(18)

and

P̂i = −1

k

(
ȧ2

a2
+ 2

ä

a

)
, i = 1, 2, 3. (19)

We can now check the energy conditions.
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Checking the NEC According to Table I, 3rd column, the NEC is satisfied if

ρ̂+ P̂i ≥ 0, i = 1, 2, 3.

According to (18) and (19),

ρ̂+ P̂i =
1

k
3
ȧ2

a2
− 1

k

(
ȧ2

a2
+ 2

ä

a

)
=

1

k
2
ȧ2

a2
− 1

k
2
ä

a

=
2

k

(
ȧ2

a2
− ä

a

)
(20)

Clearly, the 1st term in parentheses is positive, but what about the second term. Well

• a is a scale factor, which positive by defnition.

• In RW cosmology, it is assumed that the mutual gravitational attraction of all the mass/energy in the Universe has
always acted to slow the expansion, so ä is negative.

Therefore, the term −ä/a is positive, so the RHS of (20) is creater than zero, so the NEC is satisfied.

Checking the WEC According to Table I, the WEC is satisfied if

• The NEC is satisfied, which has already been established above, and

• The condition ρ̂ ≥ 0 is satisfied, which is established by (18).

Therefore, the WEC is satisfied.

Checking the SEC According to Table I, the SEC is satisifed if

• The NEC is satisifed, which (again) has already been established above, and

• The condition ρ̂+
∑3
i=1 P̂i ≥ 0 is satisfied, which we now establish.

ρ̂+

3∑
i=1

P̂i =
1

k
3
ȧ2

a2
− 3

k

(
ȧ2

a2
+ 2

ä

a

)
= 0− 6

k

ä

a
(21)

where we have already established −ä/a is positive.

Therefore, the SEC is satisfied.

3.2 Working Backwards in Full
Suppose now that we just assume (for whatever reason) that the function a is given by (11). Then, RW metric tensor is
given by

[g∗∗] =


−1 0 0 0

0
(
C2τ

1/2
)2

0 0

0 0
(
C2τ

1/2
)2

0

0 0 0
(
C2τ

1/2
)2
 =


−1 0 0 0
0 C2

2τ 0 0
0 0 C2

2τ 0
0 0 0 C2

2τ

 (22)

That is, there are no unknown functions. Then, using this metric as input to the standard algorithm, one obtains
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[G∗∗] =


3

4τ2 0 0 0

0
C2

2

4τ 0 0

0 0
C2

2

4τ 0

0 0 0
C2

2

4τ

 (23)

and converting to the mixed Einstein tensor, we obtain

[G∗∗] =


−1 0 0 0
0 C2

2τ 0 0
0 0 C2

2τ 0
0 0 0 C2

2τ


−1


3
4τ2 0 0 0

0
C2

2

4τ 0 0

0 0
C2

2

4τ 0

0 0 0
C2

2

4τ



=


−1 0 0 0
0 1

C2
2τ

0 0

0 0 1
C2

2τ
0

0 0 0 1
C2

2τ




3
4τ2 0 0 0
0 C2

4τ 0 0
0 0 C2

4τ 0
0 0 0 C2

4τ



=


− 3

4τ2 0 0 0
0 1

4τ2 0 0
0 0 1

4τ2 0
0 0 0 1

4τ2

 . (24)

From the discussion in the preceding section, we know that the principle are ρ̂ = − 1
kλ0 = 3

4k τ
2 and Pi = 1

k
1
4k τ

2. Thus, the
principal quantities are manifestly non-negative and, therefore, the energy conditions are satisfied (without the need for any
assumptions about energy content of the Universe).

For completeness, we follow the same procedure for the function a as given by (10). Then the RW metric tensor is given
by

[g∗∗] =


−1 0 0 0

0
(
C1τ

2/3
)2

0 0

0 0
(
C1τ

2/3
)2

0

0 0 0
(
C1τ

2/3
)2
 =


−1 0 0 0
0 C2

1τ
4/3 0 0

0 0 C2
1τ

4/3 0
0 0 0 C2

1τ
4/3

 (25)

and the mixed Einstein tensor turns out to be

[G∗∗] =


− 3

4τ2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 . (26)

Once again, we see that the principal quantities are non-negative, so the energy conditions are satisfied. (Notice that the
principal energy density is the same as in the preceding case and the principal pressures are all zero. The latter is not
surprising, since P = 0 was assumed in obtaining the solution (10)).

4 Satisfying the Alcubierre Conditions
The Alcubierre conditions may be expressed as follows:

• The lapse function is given by N = 1.

• The space-like hypersurfaces are intrinsically flat.

• The metric tensor on the space-like hypersurfaces is given by hij = δij , i, j = 1, 2, 3
or in matrix notation [h∗∗] = I3×3.

We have seen that the first two bullits are satisfied by the RW model, with K̄ = 0. However, the third bullit is not satsified,
since [h∗∗] = a2I3×3. Can we find a coordinates system, such that the third bullit holds? The answer is yes.
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4.1 The Coordinate Transformation
Let T : xµ → x̄µ, µ = 0, 1, 2, 3, be a transformation from the original coordinates

x = (x0, x1, x2, x3) = (τ, x, y, z) (27)

to new coordinates

x̄ = (x̄0, x̄1, x̄2, x̄3) = (τ̄ , x̄, ȳ, z̄) (28)

defined by

τ̄ = τ (29)
x̄ = a(τ)x (30)
ȳ = a(τ)y (31)
z̄ = a(τ)z (32)

Then, the inverse transformation T −1 : x̄µ → xµ is given by

τ = τ̄ (33)
x = a−1(τ̄)x̄ (34)
y = a−1(τ̄)ȳ (35)
z = a−1(τ̄)z̄ (36)

4.2 Direct Transformation of the RW Metric (K̄ = 0)
Using the inverse transformation T −1, one may obtain expressions for the dxµ in terms of the dx̄µ. Specifically, from (33)
we have

dτ = dτ̄ (37)

and from (34) through (36) we have for i = 1, 2, 3

dxi

dτ
= −a−2(τ)x̄i

da

dτ
+ a−1(τ)

dx̄i

dτ

= −a−2(τ)x̄iȧ+ a−1(τ)
dx̄i

dτ
. (38)

Now, multipying both sides of (38) by dτ yields

dxi = −a−2(τ)x̄iȧ(τ)dτ + a−1(τ)dx̄i (39)

and substituting (37) yields

dxi = −a−2(τ)x̄iȧ(τ)dτ̄ + a−1(τ)dx̄i. (40)

Then, squaring both sides, the RHS expands into four terms, i.e.

(
dxi
)2

=
(
−a−2(τ)x̄iȧ(τ)dτ̄ + a−1(τ)dx̄i

)2
= a−2(τ)

(
dx̄i
)2 − a−3(τ)x̄iȧ(τ)dτ̄dx̄i − a−3(τ)x̄iȧ(τ)dx̄idτ̄ + a−4(τ)

(
x̄i
)2
ȧ2(τ)dτ̄2. (41)

Next, substituting (37) and (41) into the RW metric (1), repeated immediately below, for convenience
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ds2 = −dτ2 + a2(τ)
{
dx2 + dy2 + dz2

}
,

we obtain

ds2 = −dτ̄2 + a2(τ)

3∑
i=1

{
a−2(τ)

(
dx̄i
)2 − a−3(τ)x̄iȧ(τ)dτ̄dx̄i − a−3(τ)x̄iȧ(τ)dx̄idτ̄ + a−4(τ)

(
x̄i
)2
ȧ2(τ)dτ̄2

}
(42)

and carrying through the multiplication by a2(τ) yields

ds2 = −dτ̄2 +

3∑
i=1

{(
dx̄i
)2 − ȧ(τ)

a(τ)
x̄idτ̄dx̄i − ȧ(τ)

a(τ)
x̄idx̄idτ̄ +

ȧ2(τ)

a2(τ)

(
x̄i
)2
dτ̄2

}
. (43)

Now, collecting terms corresponding to each combination of differentials, we have

ds2 =

(
ȧ2(τ)

a2(τ)

3∑
i=1

(
x̄i
)2 − 1

)
dτ̄2

−
3∑
i=1

ȧ(τ)

a(τ)
x̄idτ̄dx̄i

−
3∑
i=1

ȧ(τ)

a(τ)
x̄idx̄idτ̄

+

3∑
i=1

(
dx̄i
)2 (44)

which may be rewritten as

ds2 =

(
ȧ2(τ)

a2(τ)
r2 − 1

)
dτ̄2

− ȧ(τ)

a(τ)
x̄dτ̄dx̄− ȧ(τ)

a(τ)
ȳdτ̄dȳ − ȧ(τ)

a(τ)
z̄dτ̄dz̄

− ȧ(τ)

a(τ)
x̄dx̄dτ̄ − ȧ(τ)

a(τ)
ȳdȳdτ̄ − ȧ(τ)

a(τ)
z̄dz̄dτ̄

+ dx̄2 + dȳ2 + dz̄2 (45)

where r is Euclidean distance on any of the (intrinsically flat) space-like hypersurface. We can now, by inspection of (45),
pick out the coefficients of the various products of differentials, and write down the metric tensor in the new coordinates, i.e.

[ḡ∗∗] =


ȧ2(τ)
a2(τ)r

2 − 1 − ȧ(τ)
a(τ) x̄ − ȧ(τ)

a(τ) ȳ − ȧ(τ)
a(τ) z̄

− ȧ(τ)
a(τ) x̄ 1 0 0

− ȧ(τ)
a(τ) ȳ 0 1 0

− ȧ(τ)
a(τ) z̄ 0 0 1

 . (46)

Now, using metric tensor [ḡ∗∗] as input to the standard algorithm, we may obtain (via Maxima) the Einstein tensor
[
Ḡ∗∗

]
and also the mixed Einstein tensor

[
Ḡ∗∗
]

= [ḡ∗∗]
−1 [

Ḡ∗∗
]
. The latter result is given in matrix form by

[
Ḡ∗∗
]

=


−3 ȧ

2

a2 2
(
ȧä
a2 −

ȧ3

a3

)
x̄ 2

(
ȧä
a2 −

ȧ3

a3

)
ȳ 2

(
ȧä
a2 −

ȧ3

a3

)
z̄

0 − ȧ
2

a2 − 2 äa 0 0

0 0 − ȧ
2

a2 − 2 äa 0

0 0 0 − ȧ
2

a2 − 2 äa

 . (47)
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It is a standard result from linear algebra that a lower or upper triangular matrix has its eigenvalues along the diagonal.
Comparing the diagonal elements of (47) with those of (16), we see that the eigenvalues are the same. Thus, the entire
analysis following (16) in Section 3.1 is the same, which means that the stress energy tensor in the new coordinates, i.e.[

T̄ ∗∗
]

=
1

k

[
Ḡ∗∗
]

satisfies the energy condtions.

4.3 General Coordinate Transformations
It turns out that there is a general, systematic approach to dealing with coordinate transformations, and the consequent
effect on tensor components. This general, systmatic approach is called the tensor transformation law, as discussed below.

4.3.1 Coordinate Transformations and the Tensor Transformation Law

The tensor transformation law, defined immediately below, applies to all tensors of all ranks on any smooth manifold of any
dimension. This law may be stated as follows: Let

• A∗...∗... be a tensor with an arbitrary number of upper and lower indices, with components given in terms of coordinates
xµ.

• T : xµ → x̄µ be an invertable transformation, i.e. the inverse inverse T −1 exists.

Then, the components Ā∗...∗... relative to the new coordinate system x̄µ are determined by:

• Applying the Jacobian matrix J̄T of transformation T once for each contravariant (upper) index, and

• Applying the Jacobian matrix J̄T −1 of the inverse transformation T −1 once for each covariant (lower) index,

where the bar over J indicates the the elements of these matrices are written in terms of th new coordinates x̄µ. Note that
the following is always true:

J̄T −1 = J̄−1
T . (48)

That is, the Jacobian matrix of the inverse transformation is equal to the matrix inverse of the original transformation. Thus,
we can drop the labels, and just refer to J̄ and J̄−1 being applied to the contravariant and covariant indices, respectively.

4.3.2 Application of the Tensor Transformation Law to Rank-2 Tensors

Here we make explicit the meaning of tensor transformation law, as applied to an arbitrary, rank-2 tensor. Although the
explicit formulae are usually written in index notation, we will write them down in matrix notaton.

For a rank-2 tensor there are only three posibilities:

• A fully contravariant form A∗∗,

• A fully covariant form A∗∗, and

• A mixed form A∗∗.

According to the transformation law, these transform as follows:[
Ā∗∗

]
= J̄T [A∗∗] J̄ , (49)

[
Ā∗∗

]
=
(
J̄−1

)T
[A∗∗] J̄

−1 (50)
and [

Ā∗∗
]

= J̄−1 [A∗∗] J̄ . (51)
Note that (51) is a similarity transformation, whereas in general (49) and (50) are not. Thus, any mixed, rank-2 tensor has
the same eigenvalues in any coordinate system. In particular, this is true for T ∗∗ (or G∗∗), which is another way of seeing that
the eigenvalues of the mixed tensors T ∗∗ (or 1

kG
∗
∗) determine the status of the energy conditions in all coordinate systems,

i.e. for all observers.
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4.3.3 Application to the Robertson-Walker Model

Let us apply the transformation of Section 4.1, repeated here for convenience, i.e. T : xµ → x̄µ is defined by

τ̄ = τ

x̄ = a(τ)x

ȳ = a(τ)y

z̄ = a(τ)z

and T −1 : x̄µ → xµ is then necessarily given by

τ = τ̄

x = a−1(τ̄)x̄

y = a−1(τ̄)ȳ

z = a−1(τ̄)z̄

From the transformation T , we calculate

J =


∂τ̄
∂τ

∂τ̄
∂x

∂τ̄
∂y

∂τ̄
∂z

∂x̄
∂τ

∂x̄
∂x

∂x̄
∂y

∂x̄
∂z

∂ȳ
∂τ

∂ȳ
∂x

∂ȳ
∂y

∂ȳ
∂z

∂z̄
∂τ

∂z̄
∂x

∂z̄
∂y

∂z̄
∂z

 =


1 0 0 0

ȧ(τ)x a(τ) 0 0
ȧ(τ)y 0 a(τ) 0
ȧ(τ)z 0 0 a(τ)

 . (52)

However, because the result is in terms of the original coordinates xµand we are transforming to the new coordinates, we
want to write the result in terms of the new coordinates x̄µ. To accomplish this, we substitute the expressions for the original
coordinates in terms of the new coordinates, as given by the inverse transfromation T −1, which yields

J̄ =


1 0 0 0

ȧ(τ)
a2(τ) x̄ a(τ̄) 0 0
ȧ(τ)
a2(τ) ȳ 0 a(τ̄) 0
ȧ(τ)
a2(τ) z̄ 0 0 a(τ̄)

 . (53)

From the inverste transformation T −1, we calculate

J̄−1 =


∂τ
∂τ̄

∂τ
∂x̄

∂τ
∂ȳ

∂τ
∂z̄

∂x
∂τ̄

∂x
∂x̄

∂x
∂ȳ

∂x
∂z̄

∂y
∂τ̄

∂y
∂x̄

∂y
∂ȳ

∂y
∂z̄

∂z
∂τ̄

∂z
∂x̄

∂z
∂ȳ

∂z
∂z̄

 =


1 0 0 0

− ȧ(τ̄)
a2(τ̄) x̄

1
a(τ̄) 0 0

− ȧ(τ̄)
a2(τ̄) ȳ 0 1

a(τ̄) 0

− ȧ(τ̄)
a2(τ̄) z̄ 0 0 1

a(τ̄)

 (54)

which is already written in terms of the new coordinates.
Now, J̄ and J̄−1, as given by (53) and (54), can be used to obtain the components of any tensor in the new coordinates

x̄µ. For example, we can obtain the new metric tensor [ḡ∗∗] by substituting the original metric tensor [g∗∗] for [A∗∗] in (50).
Similarly, we can obtain the new mixed Einstein tensor

[
Ḡ∗∗
]
by substituting the original mixed Einstein tensor tensor [G∗∗]

for [A∗∗] in (51). Simply carrying out the required matrix multiplication shows that these two calculations produce the same
result as the the rather lengthy calculation leading to (46), followed by application of the standard algorithm to obtain (47).

4.4 Relation of Transformed RW to the 3+1 Formalism
Recall (talk 3) that in the 3+1 formalism the metric tensor is given, in all generality, by

[gµν ] =


NiN

i −N2 N1 N2 N3

N1 h11 h12 h13

N2 h21 h22 h23

N3 h31 h32 h33

 (55)
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where N is the lapse function and Ni = hijN
j , where N j is the shift vector. We will compare form of the transformed metric

tensor [ḡ∗∗], as given by (46), with that given by (55), but first we rewrite the former in a more compact form, by recalling
the definition of the Hubble parameter, i.e.

H(τ) :=
ȧ(τ)

a(τ)
(56)

and substituting into (46), yielding

[ḡ∗∗] =


H2(τ)r2 − 1 −H(τ)x̄ −H(τ)ȳ −H(τ)z̄
−H(τ)x̄ 1 0 0
−H(τ)ȳ 0 1 0
−H(τ)z̄ 0 0 1

 . (57)

Now, suppose we define the spatial metric, lapse function and shift vector is given by

hij := δij (58)

where δij is the Kronecker delta,

N := 1 (59)

and

N i := −H(τ)x̄i, i = 1, 2, 3. (60)

respectively. Then,

Ni = hijN
j = δijN

j = N i = −H(τ)x̄i (61)

and therefore the squared length of the shift vector is given by

NiN
i =

3∑
i=1

(
−H(τ)x̄i

)2
= H2(τ)

3∑
i=1

(
x̄i
)2

= H2(τ)r2 (62)

where

r =
√
x̄2 + ȳ2 + z̄2. (63)

Thus, with these definitions, the metric tensor (57) has the form of (55). That is, (57) not only conforms to the 3+1 formalism,
but satisfies the Alcubierre conditions (as listed at the top of Section 4).

4.4.1 Properties of the Shift Vector in the Tramsformed RW Cosmology

Note also that, from (62), the magnitude of the shift vector is given by

|N∗| =
√
NiN i = H(τ)r. (64)

This is Hubbles law. In otherwords, the magnitude of the shift vector is the recessional velocity at radial distant r from the
observer. For a fixed hypersurface Σ0, where the subscript zero indicates the present day hypersurface, we have the linear
relation

|N∗| = H0r. (65)

It should therefore come as no surprise that the cross-section of |N∗| along the x̄-axis has the following graph:
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Here, the units on the horizontal and vertical axes are Mpc and km/s, respectively, and H0 = 70 km/s/Mpc was used for
the calculation (This is the modern value rounded to the nearest 10 units.) It is also not surpising that the field |N∗| is
spherically symmetric about the origin, as seen in the following embedding diagram:

What may surprising is that the direction of the shift vector field is radially inward, as shown in the following vector diagram:
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despite the fact that we know that the expansion of space is pushing things outwards. However, this is consistent with the
Alcubierre results, wherein the expansion of space is pushing things to the right, but the shift vector field points to the left.
That is, expansion on the left together with contraction on the right, as shown below.

(Reminder: green and red indicate expansion and contraction, respectively.)
moves things to right, but the shift vector field points to the left, as shown below.
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4.4.2 Properties of the Extrinsic Curvature Tensor in the Transformed RW Cosmology

Recall (Talk 4) that the extrinsic curvature tensor is given, in all generality, by

Kij =
1

2N

(
∇(3)
i Nj +∇(3)

j Ni −
∂hij
∂t

)
, i, j = 1, 2, 3 (66)

where ∇(3)
j is the covariant derivative operator on the hypersurfaces, and that (66) reduces to

Kij =
1

2
(∂iNj + ∂jNi) (67)

under the Alcubierre conditions. Substituting into (67) the shift vector defined in (61), yields (in matrix form)

[K∗∗] =

 −H(τ) 0 0
0 −H(τ) 0
0 0 −H(τ)

 . (68)

Now, recall (from Talk 4) that the expansion factor is given in all generality by

θ := −Ntr [K∗∗] = −Ntr
{

[h∗∗]
−1

[K∗∗]
}
. (69)

However, under the Alcubierre conditions, specifically that N = 1 and hij = δij , (69) reduces to
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θ = −tr [K∗∗] (70)

and substituting (68) yields

θ = 3H(τ). (71)

Thus, the expansion factor is positive and constant over any specific hypersurface (which is consistent with an expanding,
homogeneous universe).

Finally, the energy density, as seen by the Eulerian observers, is given in all generality by

ρ =
1

2k

(
R(3) + θ2 −KijK

ij
)

(72)

where R(3) is the Ricci scalar on the hypersurfaces. However, under the Alcubierre conditions, (72) reduces to

ρ =
1

2k

θ2 −
3∑
i=1

3∑
j=1

K2
ij

 (73)

and substituting (68) and (71) yields

ρ =
1

2k

(
9H2 − 3H2

)
=

1

k
3H2. (74)

Now, replacing H with its defnition, as given by (56), yields

ρ =
1

k
3
ȧ2(τ)

a2(τ)
(75)

which is the same as the result obtained in (18). That is, the energy density, as seen by the Eulerian observers (in the
new coordinates), is the same as the principal energy density, just as it is for the fundamental observers (in the original
coordinates).

5 A Cosmology Update
Since the discovery of the fact that the universal expansion is accelerating, it has become necessary to reinstate the cosmo-
logical term in Einstein’s field equations, i.e.

Gµν + Λgµν = kTµν (76)

where Λ is the cosmological constant. It is natural to ask: what does the addition of the new term do to the character of the
the field equations? Here is a quote from Wald (P. 99) that answers this question:

“It can be shown [Lovelock 1972] that a linear combination of Gµν and gµν is the most general two index symmetric
tensor which is divergence free and can be constructed locally from the metric and its derivatives up to second
order, so [(76)] gives the most general modification which does not grossly alter the basic properties of Einstein’s
equation.”

In practice, it makes more sense to move the new term to the RHS of (76), where it becomes an additional source term, while
the Einstein tensor and the original stress-energy tensor are still determined by the Robertson-Walker model, as before.

With the addition of the new source term, the total energy density is taken to be the sum of three contributions (rather
than two), and so expressed as

ρ(τ) = ρm(τ) + ρr(τ) + ρΛρ(τ) (77)

where

• ρm is the matter density, including baryonic and dark matter.

• ρr is the radiation density, which is given by ρr = 3P for an isotropic source (the CMB).
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• ρΛ is the vacuum energy density, which is given by

ρΛ =
Λc2

8πG
(78)

where Λ is the cosmological constant and G is Newton’s gravitational constant.

It has become standard practice in cosmology to work with dimensionless parameters, which correspond to the three density
contributions as follows:

Ωα(τ) =
8πG

3H2(τ)
ρα(τ) (79)

where H is the Hubble parameter and the subscript α is a label that denotes m, r or Λ. The present day value of these
parameters, denoted by Ωα,0, is given by (79), by substituting the present-value H0 of the Hubble parameter and the
present-day values ρα,0 of the energy densities.

It is known that, in the present-day universe, the contribution of radiation density ρr,0 is negligible. A plot of the
remaining 2-parameter space is shown below.

In the plot:

• The horizontal axis is the dimensionless matter density.

• The vertical axis is the dimensional vacuum energy density.

• The 2-parameter space is divided into several regions, the boundaries of which are determined by the field equations.

• The circle indicates where astronomical observations place the two parameters Ωm,0 and ΩΛ,0.

Thus, according to the latest observations:
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• There was indeed a big bang.

• The Universe will expand forever.

• The expansion is accelerating.

• The dividing line between an open (hyperbolic) universe and a closed (spherical) universe cuts the circle in half, so this
question is not completely settled, but the dividing line itself is statistically the most likely case. That is, the universe
is most likely flat.

NOTE: the above plot was taken from the book
“General Relativity: an Introduction for Physicists”, 5th edition, 2012
by Hobson, Efstathiou and Lasenby
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