
A GENTLE INTRODUCTION

TO NEUTRINO OSCILLATIONS

Lecture 2: Neutrino oscillations

Eugene Stefanovich
eugene_stefanovich@usa.net

San Jose
California

October 30, 2023



ii



Contents

1 TWO-LEVEL QUANTUM SYSTEM 1
1.1 Calculation of oscillations . . . . . . . . . . . . . . . . . . . . 5

2 OSCILLATIONS OF MOVING NEUTRINOS 9
2.1 Quantum mechanics of moving neutrinos . . . . . . . . . . . . 9
2.2 Momentum-energy composition of a moving neutrino . . . . . 12

iii



iv Contents



Chapter 1

TWO-LEVEL QUANTUM

SYSTEM

In the previous chapter we learned about the ��fth force� which manifests
itself in permanent oscillations between three neutrino �avors. Next, we
would like to build a theoretical model of such oscillations.

Assumption: Limit our description to only two neutrino �avors:
µ-neutrino and τ-neutrino.

Assumption: Neutrinos have zero momentum, their spins are ig-
nored.

Conclusion: Neutrino states can be described by vectors in a two
dimensional Hilbert space H.

The full interacting Hamiltonian acting in this space will be denoted H.
We should be able to �nd its eigenvalues E2, E3 and eigenvectors |2〉, |3〉:1

H|2〉 = E2|2〉, (1.1)

H|3〉 = E3|3〉. (1.2)

Observation: Hamiltonian H is Hermitian, therefore its two eigen-
values E2, E3 are real (we will also assume they are positive) and
eigenvectors |2〉, |3〉 form an orthonormal basis in the Hilbert space
H. See Fig. 1.1.

1We use labels 2 and 3 for historical reasons, in order to be consistent with conventional
notation.
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2 Chapter 1. TWO-LEVEL QUANTUM SYSTEM

Figure 1.1: 2D Hilbert space of neutrino states with the orthonormal basis
of Hamiltonian (or energy) eigenstates |2〉, |3〉.

Figure 1.2: Time evolution of energy basis vectors is trivial: Phase factors
do not change the physical nature of states.

Observation: The time evolution of these two vectors is trivial:
they are multiplied by time-dependent phase factors, which do not
change the physical state. See Fig. 1.2.

e−iHt/~|2〉 = e−iE2t/~|2〉 (1.3)

e−iHt/~|3〉 = e−iE3t/~|3〉 (1.4)

Conclusion: Energy basis vectors |2〉, |3〉 cannot be associated
with µ-neutrino and τ-neutrino, because these particles experience
non-trivial time evolution (oscillations).
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Figure 1.3: 2D Hilbert space of neutrino states with two orthonormal bases:
|νµ〉, |ντ 〉 are �avor eigenstates, |2〉, |3〉 are mass eigenstates.

Conclusion: The state of µ-neutrino is di�erent from |2〉 and |3〉.
It may be represented, for example, by vector |νµ〉 shown by broken
red arrow in Fig. 1.3.

Conclusion: State vector of τ-neutrino should be orthogonal to
|νµ〉, because the two neutrino �avors are mutually exclusive and
they should have zero overlap. De�nite τ-neutrino �avor state is
shown by broken purple arrow in Fig. 1.3.

Observation: Energy basis |2〉, |3〉 and �avor basis |νµ〉, |ντ 〉 are
related to each other by a rotation through angle θ23.

Notation: If |Ψ〉 is an arbitrary vector in the Hilbert space, then
its components in the �avor basis will be denoted by square brack-
ets

|Ψ〉 =

[
Ψµ

Ψτ

]
= Ψµ|νµ〉+ Ψτ |ντ 〉 (1.5)

Obviously, |Ψµ|2 is the probability of �nding µ-neutrino in the state |Ψ〉,
|Ψτ |2 is the probability of �nding τ -neutrino in the state |Ψ〉.

|Ψµ|2 + |Ψτ |2 = 1. (1.6)

So, vector components in the �avor basis are useful for analyzing the �avor
content of the state.
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Notation: Vector components in the energy basis will be denoted
by round parentheses

|Ψ〉 =

(
Ψ2

Ψ3

)
= Ψ2|2〉+ Ψ3|3〉 (1.7)

These components are useful for analyzing time evolution of the state (see
eqs. (1.3) - (1.4)):

|Ψ(t)〉 = e−iHt/~|Ψ〉 = Ψ2e
−iHt/~|2〉+ Ψ3e

−iHt/~|3〉 (1.8)

= Ψ2e
−iE2t/~|2〉+ Ψ3e

−iE3t/~|3〉 (1.9)

To study time-dependent �avor oscillations we need both �avor and en-
ergy bases and we have to learn how to switch between two sets of compo-
nents. This is accomplished by applying rotation matrices. If

(
Ψ2

Ψ3

)
is a state vector in the energy basis, then its components in the �avor basis
are obtained by a unitary (or orthogonal) transformation

[
Ψµ

Ψτ

]
=

(
C S
−S C

)(
Ψ2

Ψ3

)
. (1.10)

Transformation from the �avor basis to the energy basis is given by the
inverse matrix

(
Ψ2

Ψ3

)
=

[
C −S
S C

] [
Ψµ

Ψτ

]
, (1.11)

where

C ≡ cos θ23 (1.12)

S ≡ sin θ23 (1.13)



Chapter 1. TWO-LEVEL QUANTUM SYSTEM 5

Side note, to be useful later: Energy basis vectors |2〉, |3〉 are eigen-
states of the full Hamiltonian H. Likewise, we can assume that
there exists a non-interacting Hamiltonian H0 whose eigenvectors
are �avor states |νµ〉, |ντ 〉. H0 has all 4 major interactions (strong,
weak, electromagnetic and gravitational), and H = H0 + V , where
V is the �avor mixing potential energy operator.

1.1 Calculation of oscillations

Let us now evaluate the time evolution of an initially prepared µ-neutrino.
This state is easy to write down in the �avor basis

|Ψ(0)〉 = |νµ〉 =

[
1
0

]
. (1.14)

Then we switch to the energy basis using (1.11),

|Ψ(0)〉 =

[
C −S
S C

] [
1
0

]
=

(
C
S

)
= C|2〉+ S|3〉. (1.15)

At time t this state vector evolves to

|Ψ(t)〉 = Ce−iE2t/~|2〉+ Se−iE3t/~|3〉 =

(
Ce−iE2t/~

Se−iE3t/~

)
. (1.16)

To check the �avor content of this state we have to go back to the �avor basis
using transformation (1.10)

|Ψ(t)〉 =

(
C S
−S C

)(
Ce−iE2t/~

Se−iE3t/~

)
=

[
C2e−iE2t/~ + S2e−iE3t/~

CS(e−iE3t/~ − e−iE2t/~)

]
. (1.17)

The probability of �nding µ-neutrino in this state is given by the squared
modulus of the �rst coe�cient

ρµ(t) = |C2e−iE2t/~ + S2e−iE3t/~|2

= (C2eiE2t/~ + S2eiE3t/~)(C2e−iE2t/~ + S2e−iE3t/~)

= C4 + S4 + 2C2S2 cos(γt/~), (1.18)
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where we denoted

γ = E3 − E2 (1.19)

the gap between energy eigenvalues.
Probability (1.18) has an oscillating component. It is customary to refer

to the argument of the cosine as the oscillation phase

∆φ =
γt

~
=

(E3 − E2)t

~
. (1.20)

The �avor content of the instantaneous neutrino state depends on this phase.
When

∆φ = 0, 2π, 4π . . . (1.21)

the cosine factor is equal to 1, and the probability of �nding µ-neutrino is at
its maximum

ρµ(t) = C4 + S4 + 2C2S2 = (C2 + S2)2 = 1 (1.22)

When

∆φ = π, 3π, 5π . . . (1.23)

the cosine factor is -1, and the probability of �nding µ-neutrino is at its
minimum

ρµ(t) = C4 + S4 − 2C2S2 = (C2 − S2)2 (1.24)

Using trigonometrical identities, it is not di�cult to transform (1.18) to
the conventional notation

ρµ(t) = 1− sin2(2θ23) sin2(∆φ/2) = 1− sin2(2θ23) sin2(γt/2~). (1.25)
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Figure 1.4: Plots of time dependent �avor probabilities (1.25) and (1.26).
Experimental studies of these functions may reveal two oscillation parame-
ters: period 2π~/γ and amplitude sin2(2θ23).

Correspondingly, the probability to observe τ -neutrino is

ρτ (t) = 1− ρµ(t) = sin2(2θ23) sin2(∆φ/2) = sin2(2θ23) sin2(γt/2~). (1.26)

These probabilities are plotted in Fig. 1.4.
Conclusion: Our simple two-level model provides a qualitatively

correct description of neutrino oscillations.
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Chapter 2

OSCILLATIONS OF MOVING

NEUTRINOS

2.1 Quantum mechanics of moving neutrinos

In the previous chapter we considered neutrinos at rest. But this was an over-
simpli�cations. Neutrinos are moving, moreover they are ultra-relativistic.

Assumption: For simplicity, we will consider neutrinos in 1D
space.

The Hilbert space of neutrino states has few important operators-observables.
The operator of momentum P has continuous spectrum of eigenvalues −∞ <
p <∞. The operator of mass M has discrete spectrum with two eigenvalues
m2 and m3. We assume for de�niteness that m3 > m2. In a relativistic the-
ory, the Hamiltonian is H =

√
M2c4 + P 2c2.1 The three operators commute

with each other

[H,P ] = [H,M ] = [M,P ] = 0 (2.1)

Therefore, we can de�ne a full orthonormal basis of their common eigenvec-
tors |2, p〉, |3, p〉.

1Properties of observables will be derived by using Wigner-Dirac relativistic quantum
mechanics in chapter xx.
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Figure 2.1: Momentum-energy eigenvalues (2.8) - (2.9) plotted as hyperbolas
on the pc− E plane.

P |2, p〉 = p|2, p〉, (2.2)

P |3, p〉 = p|3, p〉, (2.3)

M |2, p〉 = m2|2, p〉, (2.4)

M |3, p〉 = m3|3, p〉, (2.5)

H|2, p〉 = E2(p)|2, p〉, (2.6)

H|3, p〉 = E3(p)|3, p〉. (2.7)

where

E3(p) =
√
m2

3c
4 + p2c2, (2.8)

E2(p) =
√
m2

2c
4 + p2c2. (2.9)

Each eigenvector can be labeled by a pair of numbers (p, E) and these
pairs are plotted in Fig. 2.1. Each point on the lower hyperbola indicates
eigenstate (p, E2(p)) with mass m2. Each point on the upper hyperbola
indicates eigenstate (p, E3(p)) with mass m3.

Besides M,H,P there are other important operators-observables. One
of them is the operator of position R. It has a continuous spectrum of
eigenvalues −∞ < r <∞ and Heisenberg's commutator with momentum
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[R,P ] = i~ (2.10)

Position commutes with mass

[R,M ] = 0 (2.11)

Therefore, we can de�ne a mass-position basis |2, r〉, |3, r〉 with following
properties

R|2, r〉 = r|2, r〉, (2.12)

R|3, r〉 = r|3, r〉, (2.13)

M |2, r〉 = m2|2, r〉, (2.14)

M |3, r〉 = m3|3, r〉, (2.15)

We may choose to represent state vectors by wave functions ψ(m, p) in the
momentum basis |m, p〉 or by functions ψ(m, r) in the position basis |m, r〉.
The momentum and position wave functions are related to each other by
Fourier transform.

If ψ(2, r) is a position wave function with mass m2, then its momentum-
space counterpart is

ψ(2, p) =
1√
2π~

∫
ψ(2, r)e−ipr/~dr (2.16)

Conversely, position wave function corresponding to ψ(2, p) is

ψ(2, r) =
1√
2π~

∫
ψ(2, p)eipr/~dp (2.17)

For example, if our state is an eigenstate of momentum with eigenvalue p0

ψ(2, p) = δ(p− p0) (2.18)
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then its position counterpart is a plane wave that expands through entire
space2

ψp0(2, r) =
1√
2π~

∫
δ(p− p0)eipr/~dp =

1√
2π~

eip0r/~ (2.20)

State (2.20) is an eigenstate of the energy operator, so its time dependence
is given by a phase factor

ψp0(2, r, t) =
1√
2π~

e−i(E2(p0)t−p0r)/~ (2.21)

Similarly, the time-dependent position-space wave function of the mass state
m3 with de�nite momentum p0 is

ψp0(3, r, t) =
1√
2π~

e−i(E3(p0)t−p0r)/~ (2.22)

2.2 Momentum-energy composition of a mov-

ing neutrino

In the previous chapter we discussed zero-momentum µ-neutrino. Its mass
components also had zero momentum. So, on the energy-momentum plot 2.2,
these components can be indicated by circles A and B. They have energies
E2(0) = m2c

2 and E3(0) = m3c
2 and oscillation frequency

f =
E3 − E2

~
=

(m3 −m2)c
2

~
(2.23)

But what about moving neutrinos? They also have two mass components.

2This is an example of the Heisenberg uncertainty relationship

∆p ·∆r ≈ ~ (2.19)

∆p = 0 for the delta function δ(p − p0) in (2.18) and ∆r = ∞ for the plane wave (2.20).
The product of these uncertainties is �nite (2.19).
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Figure 2.2: If neutrino is at rest then the two mass components (A−B) of its
wave packet have equal (zero) momenta. What about mass components of a
moving neutrino? Do they have equal momenta (C − D) or equal energies
(C − E) or equal velocities (C − F )?

Do these components have equal momentum [1], or equal energy [2], or
equal velocity [3]?

If we �x the m3 mass component of the moving neutrino to point C in
Fig. 2.2. Then the question is, which point on the lower hyperbola should
be selected to represent the m2 component: D (equal momentum with C),
E (equal energy) or F (equal velocity3)? For many years, researchers con-
tinue publishing papers arguing about these possibilities, but still there is
no consensus and clear understanding about the structure of high veloc-
ity/momentum/energy neutrino states.

3Recall that relativistic velocity is de�ned as v = pc2/E. So all points on the line
0 − F − C have the same p/E ratio and the same velocity. All points on the broken line
E = pc have the same velocity v = c.
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