
A GENTLE INTRODUCTION

TO NEUTRINO OSCILLATIONS

Lecture 3: Discussion of Thomson's section 13.4

Eugene Stefanovich
eugene_stefanovich@usa.net

San Jose
California

November 13, 2023



ii



Contents

1 OSCILLATIONS OF MOVING NEUTRINOS 1

1.1 Discussion of section 13.4 in Thomson [1] . . . . . . . . . . . . 1
1.2 Wave packets and their trajectories . . . . . . . . . . . . . . . 7

iii



iv Contents



Chapter 1

OSCILLATIONS OF MOVING

NEUTRINOS

1.1 Discussion of section 13.4 in Thomson [1]

In the previous chapter we discussed zero-momentum µ-neutrino. Its mass
components also had zero momentum. So, on the energy-momentum plot 1.1,
these components can be indicated by circles A and B. They have energies
E2(0) = m2c

2 and E3(0) = m3c
2 and oscillation frequency

f =
E3 − E2

~
=

(m3 −m2)c
2

~
(1.1)

But what about moving neutrinos? They also have two mass components.
Do these components have equal momentum [2], or equal energy [3], or

equal velocity [4]?
If we �x the m3 mass component of the moving neutrino to point C in

Fig. 1.1. Then the question is, which point on the lower hyperbola should
be selected to represent the m2 component: D (equal momentum with C),
E (equal energy) or F (equal velocity1)? For many years, researchers con-
tinue publishing papers arguing about these possibilities, but still there is
no consensus and clear understanding about the structure of high veloc-
ity/momentum/energy neutrino states.

1Recall that relativistic velocity is de�ned as v = pc2/E. So all points on the line
0 − F − C have the same p/E ratio and the same velocity. All points on the broken line
E = pc have the same velocity v = c.

1
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Figure 1.1: If neutrino is at rest then the two mass components (A−B) of its
wave packet have equal (zero) momenta. What about mass components of a
moving neutrino? Do they have equal momenta (C − D) or equal energies
(C − E) or equal velocities (C − F )?

Figure 1.2: To discussion of section 13.4 in [1]. Red waves show spatial
parts eipr/~ of wave functions of the two mass components. Green arc arrows
indicate time phase factors e−iEr/~.
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One school of thought [1] says that it doesn't matter, and that oscillation
formula comes out the same in all conditions. Let me explore this argument.2

We consider neutrino states that are eigenvectors of momentum, mass and
energy (??) - (??). Correspondingly, these are plane waves in the position
space (??) - (??)

ψ(2, r, t) =
1√
2π~

e−i(E2t−p2r)/~ =
1√
2π~

e−iφ2(r,t) (1.2)

ψ(3, r, t) =
1√
2π~

e−i(E3t−p3r)/~ =
1√
2π~

e−iφ3(r,t) (1.3)

Each such plane wave is characterized by its own phase (which depends on
time and position)

φ2(r, t) = (E2t− p2r)/~ (1.4)

φ3(r, t) = (E3t− p3r)/~ (1.5)

The �avor composition at a given space-time point depends on the phase
di�erence. If φ3 − φ2 = 0, 2π . . ., then we have a µ-neutrino. If φ3 − φ2 =
π, 3π, . . ., we have the maximum probability for τ -neutrino.

Zero momentum states A − B. Let's go back to the pair of states
with zero momentum A and B in Fig. 1.2. In the inset 1.2(a) this situation is
shown in the position representation. We choose our time-coordinate system
so that neutrino is emitted or produced at point t = 0, r = 0 (point P in
Fig. 1.2(a)). The phase di�erence is zero at this point ∆φ = φ3 − φ2 = 0, so
we have an initial µ-neutrino. Neutrino measurement is performed at point
M , which is located at distance L from the production point. Moreover,
the measurement is performed T seconds later than the emission. Both
parameters L and T a�ect the �avor composition of the measured neutrino.
Setting t = T, r = L in our phase formulas (1.4) - (1.5), we get the measured
phase di�erence

∆φ = (E3T − p3L)/~− (E2T − p2L)/~
= T (E3 − E2)/~− L(p3 − p2)/~ (1.6)

2I am in a di�cult position, because I don't regard this argument as valid, but still
have to explain it.
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This is a general expression that is valid for any combination of momentum-
energy pairs (p2, E2) and (p3, E3). Let us now calculate the phase di�erence
for the zero-momentum case A−B.

Position-space wave functions of the two neutrino components A and B
are plane waves with zero wave vector, i.e., they are just constants, as shown
by red lines in the inset 1.2(a). In this case p2 = p3 = 0, so the L(p3 − p2)
contribution to the phase shift (1.6) is zero. However, the two states have
di�erent energies and di�erent time dependent phase factors e−iE2t/~ and
e−iE3t/~.3 Then the phase di�erence depends on time as ∆φ = T (E3−E2)/~.
µ-neutrino changes to τ -neutrino and back simultaneously in the entire space.

Equal momentum states C − D. Now, look at inset 1.2(b) where I
showed position-space plane waves corresponding to the pair of states C−D
having equal momentum. These two plane waves have the same wave vector
p2 = p3 = p. Just like in the case of A − B, the L(p3 − p2) contribution to
the phase shift is zero. Only the energy part T (E3 − E2) contributes, and
oscillations proceed synchronously at all positions. Obviously, the energy
di�erence E3 − E2 is smaller than in the zero-momentum case A− B. This
means that oscillations become slower as neutrino energy increases.

Taking into account that neutrinos are ultra-relativistic (p� m2c, m3c),
we may approximate

E3(p) =
√
m2

3c
4 + p2c2 = pc

√
1 +

m2
3c

4

p2c2
≈ pc

(
1 +

m2
3c

4

2p2c2

)
= pc+

m2
3c

3

2p

E2(p) ≈ pc+
m2

2c
3

2p

γ(p) = E3(p)− E2(p) ≈
(m2

3 −m2
2)c

3

2p
(1.7)

Then the oscillation phase is

∆φ =
(E3 − E2)T

~
=

(m2
3 −m2

2)c
3T

2~p
(1.8)

In experiments, oscillations are measured not as functions of time, but as
functions of L - the distance between neutrino source and detector. For our

3This di�erence is indicated by di�erent sizes of green arc arrows in 1.2(a).
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ultra-relativistic particles T ≈ L/c and p ≈ E/c, where E is neutrino energy.
This leads to oscillation phase

∆φ =
(m2

3 −m2
2)c

3L

2~E
(1.9)

Substituting this expression in (??), we obtain the standard result of neutrino
theory

ρµ(E,L) = 1− sin2(2θ23) sin2 (m2
3 −m2

2)c
3L

4~E
. (1.10)

We see that oscillations depend on two parameters: the mixing angle θ23
and the di�erence of squared masses m2

3 −m2
2. The �rst parameter controls

the oscillations amplitude sin2(2θ23). The second parameter is related to the
spatial period of oscillations. Values of these parameters can be extracted
from observations4

sin2(2θ23) > 0.9 (1.11)

m2
3 −m2

2 = 23.2× 10−4 eV 2/c4 (1.12)

Unfortunately, oscillation studies cannot provide neutrino mass eigenvalues
m2 and m3.

5

Equal energy states C − E. Now, let us assume that the two mass
components of the neutrino have equal energies as in the pair of states C−E.
The energy part T (E3 − E2)/~ does not contribute to the phase shift (1.6).
The two plane waves shown in the inset 1.2(c) have the same time-dependent
phase factors.6 The phase di�erence between points P and M comes from
the di�erence in position-space wave functions

∆φ = −L(p3 − p2)/~ (1.13)

4In general, the mixing angle θ23 may depend on neutrino momentum/energy. However,
experiments indicate that this parameter is constant within wide range of energies. We
will also make this assumption in our calculations.

5As we mentioned previously, experimental data indicate that these values do not
exceed 1 eV/c2.

6This is indicated in Fig. 1.2(c) by equal sizes of green arc arrows.
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In the ultra-relativistic case,

p3 − p2 ≈
E3 − E2

c
≈ (m2

3 −m2
2)c

3

2pc
≈ (m2

3 −m2
2)c

3

2E
(1.14)

and we return to our previous result (1.9)

∆φ =
(m2

3 −m2
2)c

3L

2~E
(1.15)

One can get a better idea of why such di�erent physical assumptions
(equal momentum and equal energy) lead to the same oscillation phase by
considering the following. In the general formula (1.6), we can substitute
T = L/c, then

∆φ =
L[(E2 − E3)− (p2 − p3)c]

~c
(1.16)

Let us now keep point C = (p3, E3) on the upper hyperbola and move the
lower hyperbola point (p2, E2) along the path F −D−E. This path roughly
coincides with the �light cone� E = pc, therefore p2 ≈ E2/c, and the phase
shift can be approximated

∆φ ≈ L(E2 − E3 − E2 + p3c)/(~c) = L(p3c− E3)/(~c). (1.17)

This expression remains constant, i.e., independent on the choice of the point
(p2, E2) on the lower hyperbola. This �proves� that oscillation pattern de-
pends on the energy/momentum composition of the oscillating neutrino only
weakly.

What's wrong with this theory? It is very unrealistic to represent neu-
trinos by plane waves having in�nite extension in space. In OPERA experi-
ment, the size of the position-space wave function has to be more than 732
km! Such a representation disregards the fact that neutrino propagates from
the point of its creation to the detector and covers the distance of L in the
course of its propagation.

A better theory should represent neutrinos by wave packets, which are
localized in both position and momentum spaces. At time t = 0 the localized



Chapter 1. OSCILLATIONS OF MOVING NEUTRINOS 7

wave packet is created near the source. Then the center of the wave packet
moves through space with velocity v ≈ c and after time T = L/v it reaches
the detector. In the next section, we will review a quantum-mechanical
approach to wave packets and their propagation in space.

1.2 Wave packets and their trajectories

For simplicity, in this section we will consider quantum mechanics of one free
particle in one-dimensional space.

In section ?? we already established that position-space wavefunction
ψ(r) and momentum-space wavefunction ψ(p) of the same state are related
to each other by direct and inverse Fourier transforms

ψ(p) =
1√
2π~

∫
ψ(r)e−ipr/~dr (1.18)

ψ(r) =
1√
2π~

∫
ψ(p)eipr/~dp (1.19)

Let us now explore this connection in some more detail.
First look at the upper panel (a) in Fig. 1.3. On the right hand side I

showed wave function ψ(r) of a particle localized close to the origin r = 0. In-
serting this function in the Fourier integral (1.18), we obtain its momentum-
space counterpart on the left hand side of 1.3(a). The position wave packet
ψ(r) has no sinusoidal components, so its Fourier frequency pro�le ψ(p)
should be localized around zero momentum p = 0, which indicates that
our state is not moving.

On the right hand side of Fig. 1.3(b), the position-space wave packet
is shifted to the right by distance a. The relevant Fourier integral can be
calculated by shifting integration variable r − a = s in (1.18)

ψ′(p) =
1√
2π~

∫
ψ(r − a)e−ipr/~dr

=
1√
2π~

∫
ψ(s)e−ip(s+a)/~ds

= e−ipa/~
1√
2π~

∫
ψ(s)e−ips/~ds

= e−ipa/~ψ(p)
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Figure 1.3: Localized particle states described by momentum and position
wave packets.

Evidently, the momentum-space Fourier transform of a displaced state ac-
quires a p-dependent phase factor e−ipa/~, as shown on the left hand side of
1.3(b). Function ψ(p) is still localized near p = 0, because the position-space
wave packet is not moving.

In order to describe a moving particle, we will apply a boost transforma-
tion to the momentum wave packet in 1.3(a). The result is shown on the
left panel of Fig. 1.3(c). The true relativistic boost transformation is rather
complicated,7 but in a reasonable approximation it may be represented as a
simple function shift ψ(p)→ ψ(p−mw), where m is particle's mass and w is
boost velocity. Then, the position-space counterpart acquires a phase factor
eimwr/~; its center moves in the position space with velocity w.

In order to see the actual movement of the position-space wave packet,
note that the time evolution of the momentum wave function is given by
simple phase factor

7see section xx
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ψ(p, t) = e−iE(p)t/~ψ(p) (1.20)

Then the corresponding position-space wave function at time t is

ψ(r, t) =
1√
2π~

∫
eipr/~e−iE(p)t/~ψ(p)dp. (1.21)

For approximate calculation of this integral, we expand E(p) in a Taylor
series around the center of the momentum-space wave packet p0 = mw

E(p) = E(p0) +
dE(p)

dp
|p=p0q + . . . (1.22)

= E(p0) + vq + . . . (1.23)

Here we took into account that momentum derivative of particle energy co-
incides with particle's velocity (see Fig. 1.4)

dE(p)

dp

∣∣
p=p0

= v. (1.24)

We also shift the integration variable

p = mw + q

Ψ(q) = ψ(mw + q)

Then

ψ(r, t) ≈ 1√
2π~

eip0r/~e−iE(p0)t/~
∫
eiqr/~e−ivqt/~Ψ(q)dq

= eip0r/~e−iE(p0)t/~
(

1√
2π~

∫
eiq(r−vt)/~Ψ(q)dq

)
= eip0r/~e−iE(p0)t/~ψ(r − vt, 0)
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Figure 1.4: Position-space wave packet moves with velocity, which is momen-
tum derivative of energy in the center of the momentum-space wave packet:
v = dE(p)/dp|p=p0 .

This result means that apart from being multiplied by a unimodular phase
factor eip0r/~e−iE(p0)t/~, the position-space wave packet remains undisturbed
and simply moves in space with constant velocity v.8

In this quasi-classical approach, our particle may be approximated as a
point (p0, r0) in the momentum-position phase space, so that particle trajec-
tory can be studied by classical mechanics.

Another conclusion: We assumed that sizes of our wave packets are rather
small, much smaller than the distance between neutrino source P and neu-
trino detector M . This means that derivations of the oscillation formula in
Thomson's section 13.4 [1] can no longer be trusted. In the next chapter we
will build a theory of neutrino oscillation, which will take into account both
the ultra-relativistic character of these particles and the localized nature of
their wave packets.

8Of course, in order to obtain this simple formula we used the linear approximation
(1.23). If non-linear terms in this Taylor expansion are taken into account, then the wave
packet will spread out in addition to the uniform movement of its center.
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