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Chapter 1

DIRAC'S FORMS OF

DYNAMICS

In the previous chapter we discussed quantum mechanics of a single free
particle. Our goal is to reach a relativistic description of neutrino, which is
a momentum-dependent two-level system with mixing interaction. Wigner's
theory has to be enhanced to take the interaction into account. Extension of
Wigner's theory to interacting systems was achieved by Dirac in 1949 [1].

1.1 Non-interacting representation of the Poincaré

Lie algebra

Wigner's relativistic quantum mechanics tells us that each quantum system
has a Hilbert space where three Hermitian generators P,H,K act and their
actions satisfy commutation relations (??) - (??). This is true for the oscil-
lating (interacting) neutrino system as well. But this should remain true also
if we turn o� the interaction responsible for neutrino mixing. Let us mark
generators of this non-interacting neutrino by the subscript �0�: P0, H0, K0.
Non-interacting generators must satisfy standard Poincaré commutators

[H0, P0] = 0, (1.1)

[K0, P0] = −i~
c2
H0, (1.2)

[K0, H0] = −i~P0. (1.3)

1



2 Chapter 1. DIRAC'S FORMS OF DYNAMICS

Let us now build in our Hilbert space the orthonormal basis |µ, p〉, |τ, p〉
of common eigenvectors of the three commuting operators: total momentum
P0, total energy H0 and mass M0 = c−2

√
H2

0 − P 2
0 c

2.

P0|µ, p〉 = p|µ, p〉, (1.4)

P0|τ, p〉 = p|τ, p〉, (1.5)

M0|µ, p〉 = mµ|µ, p〉, (1.6)

M0|τ, p〉 = mτ |τ, p〉, (1.7)

H0|µ, p〉 = Eµ(p)|µ, p〉, (1.8)

H0|τ, p〉 = Eτ (p)|τ, p〉. (1.9)

where1

Eµ(p) =
√
m2
µc

4 + p2c2, (1.10)

Eτ (p) =
√
m2
τc

4 + p2c2. (1.11)

It is convenient to represent states |Ψ〉 ∈ H as superpositions (integrals)
of basis vectors |µ, p〉, |τ, p〉

|Ψ〉 =

∫
Ψµ(p)|µ, p〉dp+

∫
Ψτ (p)|τ, p〉dp.

Coe�cients of these superpositions Ψµ(p) and Ψτ (p) are complex momentum-
space wave functions satisfying the normalization condition∫ (

|Ψµ(p)|2 + |Ψτ (p)|2
)
dp = 1.

Obviously, we can interpret two parts of this integral as probabilities of �nd-
ing µ-neutrino and τ -neutrino in our state |Ψ〉

ρµ =

∫
|Ψµ(p)|2dp,

ρτ =

∫
|Ψτ (p)|2dp.

1In imaginary world where neutrino mixing interaction is turned o�, mµ and mτ would
be neutrino masses.
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It will be convenient to put the two wave functions into one 2-component
momentum-dependent vector2

|Ψ〉 =

[
Ψµ(p)
Ψτ (p)

]
.

As there is no mixing between the �avors, each particle νµ and ντ lives inde-
pendently in its own subspace, so all relevant operators can be represented
by diagonal 2× 2 matrices in the �avor basis.

M0 =

[
mµ 0
0 mτ

]
, (1.12)

P0 =

[
p 0
0 p

]
, (1.13)

H0 =

[
Eµ(p) 0

0 Eτ (p)

]
. (1.14)

K0 = −i~

[
Eµ(p)

c2
d
dp

+ p
2Eµ(p)

0

0 Eτ (p)
c2

d
dp

+ p
2Eτ (p)

]
, (1.15)

R0 = i~
[ d

dp
0

0 d
dp

]
, (1.16)

It is easy to prove the Poincaré commutators between generators (1.13) -
(1.15). This completes construction of the non-interacting representation of
the Poincaré Lie algebra in the neutrino Hilbert space H.

1.2 Dirac forms of dynamics

Our next goal is to repeat the above construction for interacting representa-
tion (P,H,K) of the Poincaré Lie algebra.

Naively, we might assume that the di�erence between non-interacting and
interacting system resides only in the Hamiltonian, meaning that generators
of space translations and boosts remain the same in both systems

2Recall that we use square brackets to indicate components of vectors and matrices
written in the basis of non-interacting (�avor) eigenstates.
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H = H0 + V, (1.17)

P = P0, (1.18)

K = K0. (1.19)

This is how interacting theories were usually formulated in non-relativistic
classical and quantum mechanics. But in 1949 Dirac discovered [1] that
this assumption violates Wigner's principle of relativistic invariance. Indeed,
from (??) and (1.18) - (1.19) we can write

−i~
c2
H = [K,P ] = [K0, P0].

According to (1.2), the last commutator is equal to −(i~/c2)H0, which results
in the absurd equality

H = H0.

The way out of this contradiction is to accept that relativistic interaction
should be constructed by adding some interaction �potentials� to the gen-
erator of space shifts P0 or to the generator of boosts K0 or to both these
generators. There are di�erent ways to choose these interaction potentials,
which are called Dirac's �forms of dynamics�. In this work, we will focus only
on two such solutions: �instant form� and �front form�.

In Dirac's instant form of relativistic dynamics, an interaction term Z is
added to the boost momentum generator K0, while the linear momentum P0

remains interaction-free:

H = H0 + V,

P = P0,

K = K0 + Z.

In addition to the familiar �potential energy� V we have to consider �potential
boost� Z.

In the point form of Dirac's dynamics, interaction modi�es the total mo-
mentum, while the boost operator remains non-interacting:
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H = H0 + V,

P = P0 + U, (1.20)

K = K0.

Here we meet the new notion of �potential momentum� U .
Our goal is to apply Dirac's ideas about relativistic interactions to neu-

trinos and see how our choice of relativistic dynamics a�ects the oscillation
formula.

1.3 Physical meaning of symmetry generators.

Non-interacting case. (A side note)

Now, let us deviate for a moment from the main thread of the story about
neutrinos and spend some time on discussing physical relevance of the forms
of dynamics. How should we understand the new concepts of �potential
boost� Z and �potential momentum� U . Can we measure e�ects of these op-
erators in experiments? What are observable di�erences between the instant
and point forms of dynamics?3

For our discussion, instead of exotic oscillating neutrinos, it will be more
convenient to use as our example a system of N particles described in all
textbooks on classical and quantum mechanics. Let us begin with the non-
interacting set of symmetry generators P0, H0, K0. We claim that they de-
scribe a system of free particles. What does it mean exactly?

The non-interacting generators are sums of one-particle operators. For
example, the operator of total momentum is a sum of one-particle momenta:

P0 = p1 + p2 + . . . (1.21)

In order to transform state vectors and observables to the reference frame
shifted by distance a we have to apply the unitary operator of space trans-
lation

3Note that discussion below will deviate from the mainstream, because the consensus
opinion is that di�erent forms of dynamics are physically equivalent [2, 3].
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eiP0a/~.

Due to the additive character of the generator (1.21) and commutativity of pi,
the space translation operator splits into a product of one-particle operators

eiP0a/~ = ei(p1+p2+...)a/~ = eip1a/~eip2a/~ . . . (1.22)

This means that shifts apply individually and independently to each particle
in the system. The action of space shift on each particle does not depend on
the presence of other particles.

The non-interacting Hamiltonian is also additive. In non-relativistic me-
chanics (classical or quantum) we have

H0 =
p21

2m1

+
p22

2m2

+ . . . (1.23)

In relativistic physics we use a more precise expression

H0 =
√
m2

1c
4 + p21c

2 +
√
m2

2c
4 + p22c

2 + . . .

= m1c
2 +m2c

2 + . . .+
p21

2m1

+
p22

2m2

+ . . . (1.24)

Time evolution operator is an exponent of this generator. Energy operators
of di�erent particles commute, therefore the time evolution operator splits
into a product of one-particle operators

e−iH0t/~ = e
−i

(√
m2

1c
4+p21c

2+
√
m2

2c
4+p22c

2+...
)
t/~

= e−i
√
m2

1c
4+p21c

2t/~e−i
√
m2

2c
4+p22c

2t/~ . . .
(1.25)

The physical interpretation of this product is that individual particles in our
system evolve in time independently on the presence of other particles. This
is what we mean when we say that particles do not interact. In classical
mechanics, the absence of interaction means that each particle has its own
linear trajectory
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Figure 1.1: Linear trajectories of two non-interacting particles in space-time
coordinates ct− x.

ri(t) = ri0 + vi0t,

which depends only on initial conditions ri0, vi0 of this particle and nothing
else. See Fig. 1.1.

The non-interacting boost generator is also a sum of one-particle terms

K0 = k1 + k2 + . . . (1.26)

where single-particle boost operators are (compare with Eq. (??))

ki = −i~
(
hi
c2

d

dpi
+

pi
2hi

)
.

Boost momenta of di�erent particles commute with each other, therefore the
total boost transformation is

eiK0cθ/~ = ei(k1+k2+...)cθ/~ = eik1cθ/~eik2cθ/~ . . . (1.27)

Just like space and time translations, non-interacting boost acts indepen-
dently on each particle.

In the classical approximation ~→ 0, boosts transform linear trajectories
to other linear trajectories, as in Fig. 1.2. Interestingly, in this classical world
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Figure 1.2: Transformation of particle trajectories under non-interacting
boost. Coordinates of events (de�ned as intersections of trajectories) trans-
form by Lorentz formulas.

one can de�ne �events� localized in both space and time as intersections of
particle trajectories (or world lines) and assign space-time coordinates (ct, x)
to such events. Then one can prove [4] that space-time coordinates of events
transform under boosts (1.27) by Lorentz formulas (??) - (??). Thus, we
may conclude that the non-interacting boost generator (1.26) is a quantum-
mechanical expression of universal Lorentz transformations of special rela-
tivity. They may be called �universal�, because they apply equally to all
particles and do not depend on whether other particles are present in the
system. Curiously, we have derived Lorentz transformations without ever as-
suming the uni�cation of space and time into one (in our case 2D) Minkowski
space-time. Our primary assumption was the absence of interactions between
particles.

1.4 Physical meaning of symmetry generators.

Interacting case. (A side note)

Now, let us take interaction into account. Traditionally, interaction is in-
troduced in a theory by adding �potential energy� operator V to the free
Hamiltonian H0. For example, the Hamiltonian of a system of two charges -
electron and proton - may look like this4

4The approximate equality sign ≈ is used here, because we have not established yet
whether this Hamiltonian is relativistic or not, i.e., whether it can satisfy Poincaré com-
mutators with properly selected generators P , K. It can be shown that the true relativis-
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Figure 1.3: Curved trajectories of two interacting particles in space-time
coordinates x− ct.

H = H0 + V ≈
√
m2
ec

4 + p2ec
2 +

√
m2
pc

4 + p2pc
2 − e2

4π|re − rp|
. (1.28)

Operators H0 and V are called �kinetic energy� and �potential energy�, re-
spectively, in non-relativistic classical and quantum mechanics. The Coulomb
potential energy term mixes position variables of the two particles, so the time
evolution operator e−iHt/~ no longer splits into nice single-particle factors as
in (1.25). Now, trajectory of the electron becomes dependent on the presence
of the proton nearby and on the state of the proton. Likewise, the proton
�feels� the presence of the electron. This is what we call interaction. See Fig.
1.3.

For further analysis, we have to decide which form of dynamics we would
like to explore. Let us �rst start with the instant form in which the space
translation generator remains the same as in the non-interacting case

P = P0 = pe + pp. (1.29)

Just as in the non-interacting case, this form means that space translations
act universally and trivially: the unitary operator of space translation splits
into a product of one-particle factors (1.22); each particle shifts in space by
the same distance a independent on what other particles are doing and how

tic electron-proton 2-particle Hamiltonian must have relativistic corrections added to the
Coulomb term on the right hand side of (1.28).



10 Chapter 1. DIRAC'S FORMS OF DYNAMICS

Figure 1.4: Transformation of particle trajectories under interacting boost
e−i(K0+Z)cθ/~. Coordinates of events do not transform by Lorentz formulas.

our particles interact. This is a well-known and non-controversial property
of space translations, which is con�rmed by experiments.

Things become more interesting with boosts. In Dirac's instant form of
dynamics, the generator of boosts K has the form �free boost momentum K0

plus potential boost Z�.

K = K0 + Z = ke + kp + Z.

We are not ready to discuss the explicit form of the potential boost operator
Z, but in analogy with potential energy V , it seems reasonable to assume that
Z mixes variables of di�erent particles. This means that transformations of
particle observables to the moving reference frame become non-trivial: they
depend on the presence of other particles and on the strength of interaction
between them. This in turn means that transformations to the moving frame
cannot be described by simple universal Lorentz formulas (??) - (??) [5]. See
Fig. 1.4.

Our derivation of non-Lorentz boost transformations could create an im-
pression that relativistic invariance was sacri�ced somewhere along the way.
This is not the case. Here we would like to make our terminology a bit more
precise [6]. One has to distinguish two ideas: the relativistic invariance and
the manifest covariance.

By �relativistic invariance� we mean Wigner's principle, which was ex-
plained earlier: a quantum description of a physical system is relativistically

invariant if generators of inertial transformations are represented in system's

Hilbert space by Hermitian operators satisfying commutators of the Poincaré
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Lie algebra. If we managed to choose our interaction operators V and Z to
obey these commutators, then we can be sure that our theory is relativisti-
cally invariant.

The �manifest covariance� requires that physical observables form 4-scalars,
4-vectors, 4-tensors, etc. with respect to speci�c linear space-time transfor-
mations encoded in Lorentz formulas (??) - (??). It is important to note that
the two ideas are not equivalent. As we established above, Lorentz trans-
formation formulas follow from Poincaré commutators only in the limit of
vanishing interaction strength. On the other hand, Lorentz transformations
do not necessarily imply relativistic invariance, because in order to satisfy
Wigner's condition we also have to understand how the system is trans-
formed with respect to space and time translations and make sure that all
these transformations form the Poincaré group.

Our instant-form interacting theory does not satisfy the requirement of
manifest covariance. However, one should not regard this as a deadly defect,
because physical basis for the �manifest covariance� does not appear solid.

One might have a �bright� idea to reconcile the two con�icting princi-
ples by using the point form of Dirac's dynamics. Indeed, in this case the
three symmetry generators satisfy Poincaré commutators, so the theory is
relativistically invariant. On the other hand, the point form boost operator
is non-interacting K = K0, therefore boosts (like familiar Einstein-Lorentz
transformations) transform each particle independently on the presence of
other particles in the system.

However, this approach creates more problems than it solves. Point-form
dynamics requires that interaction term is present in the space translation
generator

P = P0 + U = pe + pp + U.

This means that space translations are interaction-dependent and non-trivial.
But this is contrary to observations! We routinely observe results of long-
distance space translations in everyday life. If there were non-trivial e�ects
due to the presence of the �potential linear momentum� U , we would have
noticed them a long time ago.

Another evidence against the point form dynamics will be presented in
section ??, where we will see that point-form neutrino oscillation formula is
in direct contradiction with available experiments.
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