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Chapter 1

RELATIVISTIC THEORY OF

OSCILLATIONS

In the previous chapter we arrived at a conclusion that certain preference
should be given to instant form interactions. Here we will see how neutrino
oscillations can be described in the instant and point forms of dynamics. Can
we use experimental data to decide which form of dynamics was chosen by
nature?

1.1 Mixing interaction in the instant form of

dynamics

Let us now try to build neutrino instant form generators P,H,K explicitly.
First, the total momentum remains the same as in the non-interacting case
(??)

P = P0 =

[
p 0
0 p

]
. (1.1)

We don't know much about the Hamiltonian H except that it must commute
with P0. The most general 2× 2 Hermitian matrix having this property is

H =

[
Ωµ(p) f(p)
f ∗(p) Ωτ (p)

]
, (1.2)

1
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where Ωµ(p), Ωτ (p) are some arbitrary real functions and f(p) is an arbitrary
complex function. In fact, these matrix elements cannot be chosen arbitrarily,
because our Hamiltonian must satisfy conditions of relativistic invariance.
One such condition demands that after diagonalization matrix elements of
H assume the standard momentum dependence. Keeping with our rule to
use parentheses for vectors/matrices in the energy basis, we can write

H =

(
E2(p) 0

0 E3(p)

)
=

( √
m2

2c
4 + p2c2 0

0
√
m2

3c
4 + p2c2

)
, (1.3)

where

E2(p) =
√
m2

2c
4 + p2c2, (1.4)

E3(p) =
√
m2

3c
4 + p2c2 (1.5)

are momentum-dependent energy eigenvalues and m2 and m3 are eigenvalues
of the mass operator

M =

(
m2 0
0 m3

)
.

Just as in the simple 2-level system, we can use �rotation� matrices1

U =

(
C S
−S C

)
and

U−1 =

[
C −S
S C

]
1Here we assumed that coe�cients C and S are constants that do not depend on

momentum. In principle, we could take into account non-trivial momentum dependencies
C(p), S(p). We will not do that, because experimental data suggest that C(p) and S(p)
are nearly constant.
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to make transitions from the �avor basis to the energy basis and back. For,
example, in the �avor basis the matrix of the momentum operator (1.1) is
proportional to the unit matrix

P = p

[
1 0
0 1

]
,

Then in the energy basis the matrix remains the same, as expected

P = pU

[
1 0
0 1

]
U−1 = pUU−1 =

(
p 0
0 p

)
. (1.6)

Now we have two interacting generators in explicit matrix forms: P in
(1.6) and H in (1.3). In order to prove relativistic invariance we have to
provide an expression for K, such that commutators (??) - (??) are obeyed.
This operator is easy to construct in the energy basis by analogy with (??)

K = −i~

(
E2(p)
c2

d
dp

+ p
2E2(p)

0

0 E3(p)
c2

d
dp

+ p
2E3(p)

)
. (1.7)

Then commutators for P,H,K in the energy basis can be proven exactly
by the same arguments as commutators for P0, H0, K0 in the �avor basis.
Compare, for example, with our proof of [K̂, P̂ ] in (??).

1.2 Oscillations in the instant form of dynamics

Now we can proceed to calculation of oscillations of a moving neutrino.
Suppose that we managed to prepare a µ-neutrino in a state |Ψ〉 whose
momentum-space wave function is ψ(p). This is an eigenstate of the non-
interacting mass operator M0 with eigenvalue mµ. In the non-interacting
(�avor) basis |µ, p〉, |τ, p〉, this state is represented by the normalized column
vector

|Ψ〉 =

[
ψ(p)

0

]
, (1.8)∫

|ψ(p)|2dp = 1. (1.9)
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Next we transform components of this vector to the energy basis

|Ψ〉 =

[
C −S
S C

] [
ψ(p)

0

]
=

(
Cψ(p)
Sψ(p)

)
(1.10)

and apply the time evolution operator, which is diagonal in this basis

|Ψ(t)〉 = e−iHt/~|Ψ〉 =

(
e−iE2t/~ 0

0 e−iE3t/~

)(
Cψ(p)
Sψ(p)

)
=

(
Cψ(p)e−iE2t/~

Sψ(p)e−iE3t/~

)
.

(1.11)

Then return to the �avor basis

[
Ψµ(p, t)
Ψτ (p, t)

]
=

(
C S
−S C

)(
Cψ(p)e−iE2t/~

Sψ(p)e−iE3t/~

)
= ψ(p)

[
C2e−iE2t/~ + S2e−iE3t/~

SC(e−iE3t/~ − e−iE2t/~)

]
.

(1.12)

The upper component of this vector is the momentum space wave function
of the µ-neutrino component at time t. |Ψµ(p, t)|2 is the corresponding prob-
ability distribution. In order to calculate the total probability of �nding
µ-neutrino we should integrate |Ψµ(p, t)|2 over all values of p

ρµ(t) =

∫
|Ψµ(p, t)|2dp =

∫
|ψ(p)|2

∣∣C2e−iE2(p)t/~ + S2e−iE3(p)t/~
∣∣2 dp.

Now, let us assume that the wave packet |ψ(p)|2 is well localized in the
momentum space around value p0, so that within this localization domain
functions E2(p) and E3(p) may be approximated by constants2

E2(p) ≈ E2(p0),

E3(p) ≈ E3(p0).

2Some interesting e�ects can be predicted if one goes beyond the constant approxi-
mation. For example, it appears that �avor oscillations are not permanent. They decay
gradually [1]. Another example is velocity oscillations, which will be discussed in detail in
chapter ??.



Chapter 1. RELATIVISTIC THEORY OF OSCILLATIONS 5

Then the second factor in the integrand does not depend on p and can be
moved out of the integral

ρµ(t) ≈
∣∣C2e−iE2(p0)t/~ + S2e−iE3(p0)t/~

∣∣2 ∫ |ψ(p)|2dp. (1.13)

The remaining integral is equal to 1, due to the normalization condition (1.9).
The resulting expression is exactly the one we evaluated in the simple 2-level
case (??), (??).

ρµ(t) ≈
∣∣C2e−iE2(p0)t/~ + S2e−iE3(p0)t/~

∣∣2
= C4 + S4 + C2S2 cos(γ(p)t/~) (1.14)

= 1− sin2(2θ23) sin2(γ(p)t/2~), (1.15)

where the momentum-dependent energy gap is

γ(p) ≡ E3(p0)− E2(p0).

Note that this energy di�erence is taken between two states having equal
values of momentum. So, in the instant form of dynamics we are working
with equal-momentum representation of neutrino.

Recall that in section ?? neutrino states were represented by plane waves.
These wave functions are characterized by constant probabilities of �nding
the particle anywhere in space. Therefore, there was some inconsistency in
claiming that neutrino moves from the source- to the detector and covers this
distance L in time

T ≈ L/c. (1.16)

Nevertheless, this assumption played an important role in our calculations.
In the present derivation, neutrino is modeled by a localized moving3 wave
packet, so there is no contradiction in replacing time t in (1.15) with param-
eter (1.16). Taking into account formula (??) for the energy gap

3In chapter ?? we will discuss how the wave packet ψ(p) moves in the position space.
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γ(p) ≈ (m2
3 −m2

2)c
3

2p
(1.17)

and ultra-relativistic relationship p ≈ E/c, we obtain the �nal expression for
the probability of �nding µ-neutrino at the distance L from the source

ρµ(L) ≈ 1− sin2(2θ23) sin2 (m2
3 −m2

2)c
3L

4~E
. (1.18)

This is exactly the same textbook oscillation formula (??) as was derived
in section ??. One characteristic property of this result is that oscillation
period increases as

T ∝ E ∝ 1√
1− v2/c2

when neutrino energy E and velocity v go up. This may be interpreted as
the usual relativistic time dilation applied to the oscillation period.

We see that oscillations depend on two parameters: the mixing angle θ23
and the di�erence of squared masses m2

3 −m2
2. The �rst parameter controls

the oscillations amplitude sin2(2θ23). The second parameter is related to the
spatial period of oscillations. Values of these parameters can be extracted
from observations [2]

sin2(2θ23) > 0.92,

m2
3 −m2

2 = 24.4× 10−4 eV 2/c4.

Unfortunately, oscillation studies cannot provide neutrino mass eigenvalues
m2 and m3.

4

1.3 What if the initial state is not �equal mo-

mentum�?

From formula (1.10) it follows that wave functions of the two mass compo-
nents are localized in the same neighborhood of the momentum space. This

4As we mentioned previously, experimental data indicate that these values do not
exceed ≈ 1 eV/c2.
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looks like an arbitrary assumption. The exact form of the wave packet should
depend on the method of preparation of the neutrino state. The most com-
mon source of neutrinos are weak decays, such as the two-body decay of a
pion

π+ → µ+ + νµ. (1.19)

Let us now try to determine momentum composition of the neutrino produced
in this decay. From our discussion in section ?? we know that νµ momentum
and energy are determined uniquely. Of course, this can be true only for
�xed mass neutrino components of νµ. Let us then split reaction (1.19) into
two sub-processes

π+ → µ+ + ν2, (1.20)

π+ → µ+ + ν3 (1.21)

and apply momentum-energy conservation law to each of them separately
[3].

First consider reaction (1.20) and assume that the initial pion is at rest.
The momentum conservation law requires that momenta of the two products
µ+ and ν2 are opposite: p2 and −p2. Then the energy conservation law reads

mπc
2 =

√
m2
µc

4 + p22c
2 +

√
m2

2c
4 + p22c

2.

We can solve this equation with respect to p. Ignoring negligible contribu-
tions ∝ m4

2, we obtain

p2 ≈ p0

√
1−

2m2
2c

2(m2
π +m2

µ)

4p20m
2
π

, (1.22)

where

p0 ≡
(m2

π −m2
µ)c

2mπ

(1.23)
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is the momentum of the products in the (hypothetical) case of massless neu-
trino. Neutrino ν2 with momentum (1.22) has energy

E2 =
√
m2

2c
4 + p22c

2 ≈ p0c

√
1 +

m2
2c

p0mπ

Using the same approach, we can obtain momentum and energy for the
ν3 neutrino component

p3 ≈ p0

√
1−

2m2
3c

2(m2
π +m2

µ)

4p20m
2
π

, (1.24)

E3 ≈ p0c

√
1 +

m2
3c

p0mπ

. (1.25)

This means that the two mass components produced in π+ decay have neither
equal momenta nor equal energies. The momentum di�erence is

p2 − p3 ≈
(m2

3 −m2
2)(m

2
π +m2

µ)c2

4p0m2
π

and the energy di�erence is

E3 − E2 ≈
(m2

3 −m2
2)c

2

2mπ

Substituting numerical values relevant to the pion decay

mπ = 139.6 MeV,

mµ = 105.7 MeV,

p0c = 29.8 MeV,

(m2
3 −m2

2) = 24.4× 10−4 eV 2/c4,

we obtain
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Figure 1.1: Momenta and energies of neutrino mass eigenstates |ν2〉 and |ν3〉
produced in pion decay. The width of the momentum-space wave packet
ψ(p) is much greater than the momentum di�erence p2 − p3.

p2c− p3c = 30× 10−12 eV,

E3 − E2 = 8× 10−12 eV.

See Fig. 1.1. Apparently, this result contradicts our instant-form assumption
about the equal momentum composition of a µ-neutrino (1.10). Does this
mean that our oscillation formula (1.15) is incorrect?

We have to remember that realistic particle states are described by wave
packets. Let us try to estimate the width of the neutrino wave packet ψ(p)
created as a result of pion decay. We can do that by taking into account
that pion mass is not well de�ned. Pion lifetime is τ = 2.6 × 10−8s.5 The
corresponding mass uncertainty is

∆mπ =
~
τc2

=
6.6× 10−16eV · s
2.6× 10−8s · c2

= 2.5× 10−8eV/c2.

Then the uncertainty of the neutrino momentum (i.e., the width of the
momentum-space wave function) can be estimated from (1.23)

5Muon is also unstable, but its lifetime is much longer τ = 2.2 × 10−6 s, so for our
purposes it is permissible to treat muon as a stable particle.
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Figure 1.2: Two mass components of a neutrino state have wave functions
ψ2(p) and ψ3(p) with zero overlap.

∆pc =
dp0
dmπ

∆mπc =

(
1

2
+

m2
µ

2m2
π

)
∆mπc = 0.79× 2.5× 10−8eV = 2× 10−8eV.

This uncertainty is much greater than the momentum di�erence p2c − p3c
(see Fig. 1.1). Therefore it is legitimate to treat neutrinos produced in
pion decays as equal-momentum states and apply to them the instant-form
approach developed above.

We have to admit that the argument about the wide momentum-space
wave packet does not work in all cases. There are beta decays whose lifetimes
are very long, the mass uncertainty of the parent particle is small and the
width of the wave packet is comparable with the di�erence p2 − p3. What
can we say about oscillations in these cases?

Let us see what happens if wave functions of the two mass components
are localized in di�erent non-overlapping momentum regions, as shown in
Fig. 1.2.

|Ψ〉 =

(
Cψ2(p)
Sψ3(p)

)
, (1.26)∫

|ψ2(p)|2dp =

∫
|ψ3(p)|2dp = 1,∫

ψ2(p)ψ
∗
3(p)dp = 0. (1.27)
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Recall that the plane-wave approach from section ?? predicted that formula
(1.15) should remain essentially valid in this case as well. Are we going to
get the same result in our wave packet approach?

After time evolution state (1.26) becomes

|Ψ(t)〉 =

(
Cψ2(p)e

−iE2t/~

Sψ3(p)e
−iE3t/~

)
.

Returning to the �avor basis we obtain

[
Ψµ(p, t)
Ψτ (p, t)

]
=

(
C S
−S C

)(
Cψ2(p)e

−iE2t/~

Sψ3(p)e
−iE3t/~

)
=

[
C2ψ2(p)e

−iE2t/~ + S2ψ3(p)e
−iE3t/~

−SCψ2(p)e
−iE2t/~ + SCψ3(p)e

−iE3t/~

]
The probability of �nding µ-neutrino is given by the integral

ρµ(t) =

∫
|Ψµ(p, t)|2dp =

∫ ∣∣C2ψ2(p)e
−iE2(p)t/~ + S2ψ3(p)e

−iE3(p)t/~
∣∣2 dp

=

∫
dp
(
C2ψ2(p)e

−iE2(p)t/~ + S2ψ3(p)e
−iE3(p)t/~

) (
C2ψ∗

2(p)eiE2(p)t/~ + S2ψ∗
3(p)eiE3(p)t/~

)
=

∫
dpC4|ψ2(p)|2 +

∫
dpS4|ψ3(p)|2 +

∫
dpC2S2ψ2(p)ψ

∗
3(p)e−i(E2(p)−E3(p)t/~

+

∫
dpC2S2ψ∗

2(p)ψ3(p)e
i(E2(p)−E3(p)t/~.

Due to the zero overlap condition (1.27), the third and fourth terms on the
right hand side vanish, so the µ-neutrino probability remains constant in
time

ρµ(t) = C4

∫
dp|ψ2(p)|2 + S4

∫
dp|ψ3(p)|2 = C4 + S4

There is no oscillation! In the instant form of dynamics we are free to

prepare neutrino state with di�erent momentum-space wave func-

tions of mass components. But we will get oscillations only if these

wave functions overlap.
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1.4 Oscillations in the point form of dynamics

Return to the non-interacting neutrino system. In section ?? we introduced
wavefunctions and operators in the basis |µ, p〉, |τ, p〉 of common eigenvectors
of momentum P0, energyH0 and massM0. But in quantummechanics, we are
free to choose any convenient basis set. Let us introduce operator Q0 which
is the ratio of the non-interacting linear momentum and mass: Q0 ≡ P0/M0.
Eigenvalues of this operator will be denoted by q; their spectrum occupies the
entire real line q ∈ [−∞,∞] provided that the mass operator M0 is strictly
positive. Then we can rewrite non-interacting operators (??) - (??) as matrix
functions de�ned on this spectrum, i.e., in the basis |µ, q〉, |τ, q〉

Q0 =

[
q 0
0 q

]
= q

[
1 0
0 1

]
, (1.28)

M0 =

[
mµ 0
0 mτ

]
, (1.29)

P0 = M0Q0 =

[
mµ 0
0 mτ

]
q, (1.30)

H0 = M0c
2
√

1 +Q2
0/c

2 =

[
mµ 0
0 mτ

]
c2
√

1 + q2/c2, (1.31)

K0 = −i~
[

1 0
0 1

](√
1 + q2/c2

d

dq
+

q

2c2
√

1 + q2/c2

)
. (1.32)

Next we have to construct interacting energy H, momentum P , and boost
momentum K. This might be a di�cult task in the �avor basis, but it
becomes almost trivial in the energy basis. First note that Q0 and K0 are
proportional to the unit matrix, so they retain their forms in the new basis

Q0 =

(
q 0
0 q

)
, (1.33)

K = K0 = −i~
(

1 0
0 1

)(√
1 + q2/c2

d

dq
+

q

2c2
√

1 + q2/c2

)
(1.34)

Let us now postulate expressions for the interacting generators of space and
time translations
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Figure 1.3: Neutrino energy eigenvalues Ei(q) = mic
2
√

1 + q2/c2 as functions
of the parameter q in Dirac's point form of dynamics. Note that the energy
gap E3(q)− E2(q) grows as a function of velocity (or q).

P = MQ0 =

(
m2 0
0 m3

)
q, (1.35)

H = Mc2
√

1 +Q2
0/c

2 =

(
E2(q) 0

0 E3(q)

)
, (1.36)

Here, instead of p-dependent instant form energy eigenvalues (1.4) - (1.5) we
use q-dependent point form eigenvalues

E2(q) = m2c
2
√

1 + q2/c2, (1.37)

E3(q) = m3c
2
√

1 + q2/c2. (1.38)

See Fig 1.3.6

It is not di�cult to verify that matrices P,H,K satisfy the required com-
mutation relations (??) - (??). Therefore our theory is relativistically invari-
ant. From (1.34) it follows that the boost momentum operator K remains
non-interacting. This means that we managed to construct a point form
representation of the Poincaré Lie algebra, as promised.

6Note that E(q) = mc2
√
1 + q2/c2 =

√
m2c4 +m2q2c2 =

√
m2c4 + p2c2 = E(p).
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Now calculations of neutrino �avor oscillations can proceed in full analogy
with the instant form. For our initial state, we choose the same state as in
(1.8). The only di�erence is that now we express the wave function ψ(p)
through variable q

φ(q) ≡ ψ(mµq),

|Ψ〉 =

[
φ(q)

0

]
.

In the energy basis

|Ψ〉 =

[
C −S
S C

] [
φ(q)

0

]
=

(
Cφ(q)
Sφ(q)

)
The time evolution of this vector is

|Ψ(t)〉 = e−iHt/~|Ψ〉 =

(
e−iE2t/~ 0

0 e−iE3t/~

)(
Cφ(q)
Sφ(q)

)
= φ(q)

(
Ce−iE2t/~

Se−iE3t/~

)
The t-dependent µ-neutrino state in the �avor basis is (compare with (1.11))

|Ψ(t)〉 = φ(q)

[
C2e−iE2(q)t/~ + S2e−iE3(q)t/~

CS
(
e−iE3(q)t/~ − e−iE2(q)t/~

) ] .
The probability for �nding µ-neutrino in this state is (compare with (1.13))

ρµ(t) =

∫ (
C2eiE2(q)t/~ + S2eiE3(q)t/~

)
×(

C2e−iE2(q)t/~ + S2e−iE3(q)t/~
)
|φ(q)|2dq

= C4 + S4 + 2C2S2

∫
|φ(q)|2 cos

(
δ(q)t

~

)
dq, (1.39)

where δ(q) is the gap between energy eigenvalues

δ(q) ≡ E3(q)− E2(q) = ∆mc2
√

1 + q2/c2,

∆m ≡ m3 −m2.
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Assuming that neutrino wave function is well localized near value q0, we can
replace δ(q) in (1.39) with a constant

δ(q) ≈ δ(q0) = E3(q0)− E2(q0) = ∆mc2
√

1 + q20/c
2, (1.40)

take the q0-independent oscillating factor cos(δ(q0)t/~) out of the integral
and �nally obtain (compare with (1.15))

ρµ(t) ≈ C4 + S4 + 2C2S2 cos

(
δ(q0)t

~

)
= 1− sin2 2θ23 sin2 ∆mc2

√
1 + q20/c

2t

2~
(1.41)

At high energies q0 � c and t ≈ L/c, therefore, we can approximate

ρµ(t) ≈ 1− sin2 2θ23 sin2 ∆mq0L

2~
.

Our result (1.40) means that in the point form of dynamics the two neutrino
mass components have equal q values. To clarify the physical meaning of
this result, notice that we can switch variables from q0 to neutrino velocity

v ≡ pc2

h
=

q0√
1 + q20/c

2
.

This means, in particular, that the two mass components of oscillating neu-
trino have equal velocities, as shown in Fig. 1.4.7 In contrast to the instant
form (??), the energy gap δ increases with velocity. This means that oscilla-
tions of a fast moving neutrino (1.41) become faster rather than slower. This
prediction is completely contradicted by Einstein's special relativity and by
existing experiments. However, it is important to realize that acceleration
of time-dependent processes in moving systems is an inherent property of
the point form dynamics. This property can be proved under very general

7Of course, it should be possible to prepare neutrino state which does not respect the
equal velocity condition. Then the oscillation phenomenon may disappear in full analogy
with our discussion in section 1.3.
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Figure 1.4: Neutrino mass-momentum-energy eigenvalues in pc − E coordi-
nates. In point-form dynamics, neutrino mass components have equal veloc-
ities, as in pairs A − B and C − D. The energy gap E3 − E2 grows as a
function of velocity, therefore oscillations become faster at higher energies.
This contradicts observations.

conditions. An example of such a proof applied to decay laws of fast-moving
particles can be found in section 4.4.4 of [4].

Our discussion in this chapter should lead us to the following conclu-
sion: Neutrino mixing interaction belongs to the instant form of

dynamics.
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