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1 Introduction

Over the past few years, we’ve focused on relativistic quantum field theory as
it applies to fundamental physics. Similar mathematical techniques can be
used to study non-relativistic quantum many-body physics. Lancaster takes
on this subject matter towards the end of the book, with the first topic being
SuperFluids, in Chapter 42. To study this chapter, we need some selected
material from earlier chapters. This set of notes covers the basic quantum
field theoretic formulation for both relativistic fundamental particle theory
and non-relativistic many-body theory. The following topics will be covered
(the Chapter numbers refer to Lancaster):

� Harmonic oscillators, phonons (Chapter 2) and fields (Chapters 3 and
4)

� Digression on Kabbalah

� Complex scalar field (Chapter 7)

� Canonical quantization and non-relativistic limit for complex scalar
fields (Chapter 12)

� Hamiltonians and Lagrangians for non-relativistic many-body fluid physics
(Chapter 4)

Believe it or not, much of this will look familiar.
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2 Harmonic Oscillators

“The career of a young theoretical physicist consists of treating
the harmonic oscillator in ever-increasing levels of abstraction.”

Sidney Coleman

This section is important because it introduces ladder operators.
The harmonic oscillator itself, isn’t especially germane to field theory. How-
ever, what is important is the technique of using ladder operators for finding
the spectrum of Hamiltonians. The technique has to do with solutions of
certain kinds of differential equations, of which the harmonic oscillator is the
simplest.

2.1 Mass on a spring

(Lancaster 2.2) Classically, the energy of a spring (linear harmonic oscillator
≡ LHO) is given by

E =
p2

2m
+
Kq2

2
. (1)

The rules for (canonical) quantization are:
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� Replace q and p by (non-commuting) operators q̂ and p̂ on a Hilbert
space.

� Require that those operators obey

[q̂, p̂] ≡ q̂p̂− p̂q̂ = i~. (2)

� Replace E with the operator Ĥ (the Hamiltonian).

The possible energy values for the system are obtained by solving the equa-
tion

Ĥ|ψ〉 = E|ψ〉 (3)

where |ψ〉 denotes a vector of the Hilbert space. In this equation, |ψ〉 is called
an eigenvector of Ĥ, and E is its eigenvalue.

We solve this eigenvalue equation by a set of tricks that we’ll use over and
over again in various contexts.

� Define the operator â by

â =

√
mω

2~

(
q̂ +

i

mω
p̂

)
(4)

where ω ≡
√
K/m. The adjoint (effectively the complex conjugate of

an operator) of a is

â† =

√
mω

2~

(
q̂ − i

mω
p̂

)
(5)

� Plug into Eq. (2) to obtain

[â, â†] = 1 (6)

and into Eq. (1) to obtain

Ĥ = ~ω
(
â†â+

1

2

)
. (7)

Eq. (6) is a critical commutation relationship. When operators satisfy
this equation, they are known as lowering (â) and raising (â†) operators
because they lower and raise the energy. We’ll see shortly that â and â†

can also be interpreted as particle annihilation and creation operators.
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� I’m about to change the conventional presentation because I
think the conventional notation leads to an unintended sleight
of hand. Here’s an example to illustrate what we can do with â and
â†. Suppose there is a vector |γn〉 with the property that

â†â|γn〉 = n|γn〉. (8)

Then we can show that â†|γn〉 ∝ |γn+1〉. Here’s the proof. We want to
show that

â†â
(
â†|γn〉

)
= (n+ 1)

(
â†|γn〉

)
. (9)

Manipulate the LHS.

â†ââ†|γn〉 =
(
â†â†â+ â†

)
|γn〉

=
(
â†(â†â) + â†

)
|γn〉

=
(
nâ† + â†

)
|γn〉

= (n+ 1)â†|γn〉.

(10)

where the first line is derived from Eq. (6).

� From the above, we immediately find that the Hamiltonian (Eq. (48)
has eigenvectors |γn〉 with eigenvalues (energies) ~ω(n+ 1

2
).

� The lowest-energy state has n = 0 and is called the single oscillator
vacuum state |γ0〉. Notice that it’s energy is not 0 (it’s ~ω/2).

� See Lancaster 2.2 for the remaining parts of this analysis but notice
that he uses the (conventional) state notation |n〉 rather than |γn〉.

� One final thing. The usual quantum LHO introduction starts with the
Schrodinger equation. Instead of a Hilbert space and operators, we deal
with wave functions and, for example, the differential operators q and
−i~ ∂

∂q
. Then our eigenvalue equation becomes a differential equation.

What we learn from the operator technique above, is that the essential
facts about the theory are obtained from the canonical commutation
relations.

2.2 Many independent LHO’s

Lancaster 2.3.
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� First, let’s simplify notation.

– Don’t put carats on operators. So

â→ a

â† → a†

q̂ → q

p̂→ p

Ĥ → H

...

(11)

There will occasionally be some notational ambiguity which hope-
fully can be resolved by context.

– Pick dimensions where ~ = 1.

� Next consider a whole bunch of non-interacting (independent) LHO’s.
The Hamiltonian is

H =
N∑
i=1

Hi (12)

where

Hi =
p2
i

2mi

+
miω

2
i q

2
i

2
. (13)

The independence of the LHO’s is expressed by the fact that there are
no terms involving products of operators with different indices. This
independence also implies that there are no connections between the
various qk and therefore we can’t assert any kind of spacial relationship
between the various springs (they may as well be laid out randomly in
space).

The qi and pi operators obey the CCR (canonical commutation rela-
tions)

[qi, pj] = iδi,j

[qi, qj] = 0

[pi, pj] = 0.

(14)

Notice that we’ve set ~ = 1. Also notice that since there are more
operators (N pairs), we explicitly show that the commutators are 0
when the indices are different.
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� We want to know the possible values of total energy for this system.
As before, we use the lowering-raising operator trick. Define the ith

lowering operator by

ai =

√
miωi

2

(
qi +

i

miωi
pi

)
. (15)

Then the ith raising operator is a†i .

We generalize the observations of last section by introducing eigenvec-
tors |γn1 , γn2 , ..., γnk

, ..., γnN
〉 with the property that

âk
†âk|γn1 , γn2 , ..., γnk

, ..., γnN
〉 = nk|γn1 , γn2 , ..., γnk

, ..., γnN
〉. (16)

As before, we can show that a†k|γn1 , γn2 , ..., γnk
, ..., γnN

〉 ∝ |γn1 , γn2 , ..., γnk+1
, ..., γnN

〉,
and that

H|γn1 , γn2 , ..., γnk
, ..., γnN

〉 =

(
N∑
k=1

ωk(nk +
1

2
)

)
|γn1 , γn2 , ..., γnk

, ..., γnN
〉.

(17)
The vacuum state is |γ0, γ0, ..., γ0, ..., γ0〉.

2.2.1 Digression on Fourier transforms

When dealing with independent oscillators, there is no special reason why
we should consider the Fourier transforms of the position and momentum
operators. However, we may choose to do so. I’ll do so in order to illustrate
a different set of raising and lowering operators.

For now, turn to a 1D example with an even number N of particles numbered
from −N/2 through N/2− 1. We’ll relabel the coordinates from qi to xi to
emphasize the one-dimensionaity. Let

x̃k =
1√
N

N
2
−1∑

j=−N
2

xje
−ijka

p̃k =
1√
N

N
2
−1∑

j=−N
2

pje
−ijka

(18)

where a = 2π
N

. Then, assuming the previous CCR, we can derive that
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[x̃k, p̃k′ ] = iδk,−k′ . (19)

Lancaster goes on to define new lowering and raising operators1

ãk =

√
mωk

2

(
x̃k +

i

mωk
p̃k

)
ã†k =

√
mωk

2

(
x̃−k +

i

mωk
p̃−k

) (20)

where

ωk =
√

4K/m sin

(
ka

2

)
. (21)

and from which (see Lancaster exercise 2.3) we can derive

xj =
1√
mN

∑
k

1√
2ωk

[
ãke

ikja + ã†ke
−ikja

]
. (22)

From the definitions in Eq. (20), we can show that ãk and ã†k obey the usual
commutation relations for lowering and raising operators, such as

[ãk, ã
†
k] = δk,k′ . (23)

Now, it’s important to observe that these lowering-raising operators do not
lower and raise the particle-states discussed above. In particular,

ã†k|γn1 , γn2 , ..., γnk
, ..., γnN

〉 6∝ |γn1 , γn2 , ..., γnk+1
, ..., γnN

〉. (24)

This should not be a surprise, since we’ve changed variables to be linear com-
binations of the particle-variables. We can understand this in terms of Fock
space states (multiparticle Hilbert space). The basis states we were using
with the previous lowering-raising operators, were the “canonical Fock space
basis states” 2 |γn1 , γn2 , ..., γnk

, ..., γnN
〉 = |γn1〉|γn1〉...|γnk

〉|γnN
〉. The basis

states used with the operators ak are linear combinations of the canonical
Fock basis states. We will see later that ãk and ã†k are best interpreted as
“annihilation and creation” operators – to be defined shortly.

1Beware of a few typos in Lancaster.
2For now I’m ignoring all matters having to do with symmetrization – see Lancaster.
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2.3 Phonons

Lancaster 2.4

Now we take a string of harmonic oscillators, each of which interacts with
its neighbors. As in the previous subsection, we’ll use the position operator
x rather than q, to indicate that the LHO’s lie along the x direction and are
ordered so that consecutive indices are neighbors.

H =

N
2
−1∑

j=−N
2

p2
j

2m
+

1

2
K(xj+1 − xj)2. (25)

In order to simplify the math, we will assume periodic boundary conditions.3

It turns out that the system can be most easily mathematically described
by transforming to a new basis obtained by the Fourier transformations de-
scribed in subsection 2.2.1. We can then show (using notation of subsection
2.2.1)

H =
∑
k

ωk

(
ã†kãk +

1

2

)
. (26)

To summarize, we start with equal-mass particles connected by coupled
springs, each of which has the same spring constant. We derive the quan-
tum Hamiltonian for this system, as a sum over collective modes labeled

3The rationale for various boundary conditions, is that physics “in the bulk” (i.e., in
the interior of the system) is insensitive to what happens at the boundary. That isn’t
always the case, but physicists tend to check before making the insensitivity-assumption.
In 1D systems, one can actually construct periodic boundary conditions by closing the
string on itself.
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by the index k. Because of the commutation relations for ak and a†k, each
mode can have energy in integer-multiples of the mode-frequency ωk =√

4K/m sin
(
ka
2

)
. We might think of these modes as harmonic oscillators

with energy in quanta of ωk. Alternatively we can regard these modes as
consisting of states of n particles called phonons each of which have energy
in quanta of ωk – where ã†kãk has eigenvalue n, i.e. ã†kãk is the number opera-
tor for the kth mode. Either interpretation would be valid since the harmonic
oscillator has energy levels in integer multiples of ωk. However, we’ll see later
when we consider independent particles under the influence of a non-LHO
potential, and therefore with energies not proportional to an integer, that
the number-operator interpretation is more appropriate.

2.3.1 Annihilation and creation operators

Up to now, I’ve tried to refer to aj and âj as lowering and raising operators
rather than as annihilation and creation operators. That’s because these
operators change the states of particles but they don’t change numbers of
particles. As we saw in the previous paragraphs, the operators ak and a†k
may deserve a different interpretation. We’ll explore this now.

In this section, I’ll define DIFFERENT operators that we can use instead,
which change numbers of particles, and which lead to the same physics.
We’ll refer to these operators as annihilation and creation operators. They
happen to have the same commutation relations as the lowering and raising
operators. Lancaster goes through this analysis in chapters 3 and
4, but in my opinion he obscures some of the points by his choice
of terminology and notation. A clearer treatment – in my opinion
– is given in section 64 of Volume 3 (on QM) of the Landau and
Lifshitz series.

Before we start, here’s why all this important.

� Despite mathematical equivalence, lowering-raising operators are not
interpreted the same as annihilation-creation operators. They have
similar properties. Operators with those kind of commutation relations
are sometimes called ladder operators.

� In general, ladder operators can have multiple interpretations depend-
ing on context. Even when they are interpreted as particle annihilation
and creation operators, they can be transformed into different sets of
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annihilation and creation operators for entities that can best be re-
garded as linear combinations of the original particles. The physicist
Bogoliubov, whose contributions are discussed in Lancaster Chapter
42, is responsible for many insights having to do with the fungibility of
particles.

� The lowering-raising formalism depends on a generalized LHO many-
body Hamiltonian (the phonon or independent-oscillator Hamiltonian)
where single-particle energy levels are evenly spaced. The annihilation-
creation formalism is more flexible.

� Many-body physicists use the annihilation-creation formalism rather
than the lowering-raising formalism.

� The connection to quantum field theory is clearer with the annihilation-
creation formalism. In QFT, particles can be actually annihilated and
created and therefore the strict lowering-raising interpretation isn’t suf-
ficient. Besides, in QFT the fields at a point (t,x) don’t directly rep-
resent particles whose state-energies are of interest.

Consider a system with an infinite number of distinct (indistinguishable)
particles. We can regard such a system as the N →∞ limit of an N-particle
system, and we write the canonical Fock state basis4in the form of vectors

|γn1 , γn2 , ..., γnk
, ..., 〉 = |γn1〉|γn2〉...|γnk

〉... (27)

These denote states where the kth particle is in state |γnk
〉. An alternate

notation for such a vector is the “occupation number” representation (see
Lancaster Chapter 3)

|Nγ0 , Nγ1 , ..., Nγk , ...〉. (28)

This is interpreted as meaning “Nγ0 particles are in state |γ0〉, Nγ1 particles
are in state |γ1〉... Nγk particles are in state |γk〉, etc.” We can see that
this notation is essentially a different way of writing the Fock basis states
except that we don’t count as separate states |γn1〉|γn2〉...|γnk

〉 and
|γn2〉|γn1〉...|γnk

〉.4

4I have swept under the rug, the entire discussion of symmetrization of wave states.
In point of fact, the canonical Fock states aren’t states of the physical Hilbert space.
Instead, linear combinations are required such that the state is symmetric (or for
fermions, antisymmetric) under exchange of particles. This is discussed at length in Lan-
caster and comes out naturally in the occupation number representation. I especially
like a treatment given by Neumaier in https://www.physicsforums.com/insights/

clarifying-common-issues-with-indistinguishable-particles/.
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Now we will use this notation to define the ladder operators aγi and a†γi .

aγk |Nγ0 , Nγ1 , ..., Nγk , ...〉 =
√
Nγk |Nγ0 , Nγ1 , ..., Nγk − 1, ...〉,

a†γk |Nγ0 , Nγ1 , ..., Nγk , ...〉 =
√
Nγk + 1|Nγ0 , Nγ1 , ..., Nγk + 1, ...〉.

(29)

We can show that these operators obey the usual ladder-operator commu-
tation rules. As we see, these ladder operators respectively annihilate and
create particles and we therefore call them annihilation and creation oper-
ators. From now on, when we encounter ladder operators in many-body
theory or QFT, they will be interpreted as annihilation/creation operators.
We will simplify the above notation to

ak|N0, N1, ..., Nk, ...〉 =
√
Nk|N0, N1, ..., Nk − 1, ...〉,

a†k|N0, N1, ..., Nk, ...〉 =
√
Nk + 1|N0, N1, ..., Nk + 1, ...〉.

(30)

2.3.2 A Lagrangian digression on phonons

This next blurb is an after-thought to the material in Lancaster. So far
in these notes, I haven’t introduced Lagrangians or the rules governing the
use of Lagrangians. That will come later. For now, I’ll assume we all have
encountered Lagrangians in the past, and I’ll briefly summarize the situation
for the preceding phonon example. Let the phonon Lagrangian be

Lphonon =
∑
j

m

2
∂0xj∂0xj −

δ

2
K∂̂xj ∂̂xj (31)

where we define ∂̂xj ≡ xj−xj−1

δ
. Although I won’t go through the derivation

here, it can be shown that (for an infinite number of particles) this Lagrangian
has the phonon Hamiltonian H of Eq. (25)).

This notation is suggestive of fields, if we make the following interpretation:
Let xj denote the displacement – for example in the x direction of an atom
in the jth position along a lattice in the z direction. Rewrite xj as x(t, y)
and the above expression ends up resembling the kinetic part of a relativistic
scalar field theory.

2.4 Fields

Lancaster 11 and also see Lancaster Chapters 3 and 4
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As we’ve seen in the previous sections5 , many-body theories can be expressed
in terms of either xj which describe the original particle positions, or in terms
of “wave numbers”, which describe matter waves.

One critical difference between quantum field theory and many-body theory
is that in many-body theory, the number of particles is conserved. Therefore
all expressions for observables, must involve products with equal numbers of
annihilation and creation operators.

For phonons, we saw that particle-position description can be related to the
wave number description (using annihilation and creation operators) by

xj =
1√
mN

∑
k

1√
2ωk

[
ãke

ikja + ã†ke
−ikja

]
. (32)

We can write this equation in suggestive notation as

φ(j) =
1√
mN

∑
k

1√
2ωk

[
ãke

ikja + ã†ke
−ikja

]
, (33)

where we’ve replaced the position operator xj by a (discrete) field operator
φ(j).

As the number, N , of particles becomes very large, as we go from 1 to 3
dimensions, and as we restrict motion to a box of volume V with periodic
boundary conditions, we end up with a continuum description

φ(x) ∝
√

1

V
∑
p

1√
ω(p)

(
ape

ip·x + a†pe
−ip·x) (34)

where ω is model-dependent.

Lancaster points out that this expansion can be extended to the infinite-
volume limit to an expression such as

φ(x) =

�
d3p

(2π)
3
2 (2Ep)

1
2

(
ape

ip·x + a†pe
−ip·x) . (35)

This is a time-independent version of a scalar quantum field, so we
see a resemblance between QFT and a phonon-like description of
many-body theory.

5In Subsection 2.2 we didn’t change to a Fourier transformed basis but we could have
done so following precisely the same technique as what we did with phonons. Results
would have looked the same, except for the values of ωk.
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Lancaster then organizes these observations in Chapters 3 and 4.

� Begin by adopting a particle-centric notation (instead of an LHO-
centric approach) where the fundamental quantum operators are the
annihilation and creation operators corresponding to various wave num-
bers (interpreted as momenta), and the fundamental quantum states
are described by specifying how many quanta (levels of energy excita-
tions) there are for each wave number (the “occupation-number” rep-
resentation).

� Introduce a position-centric object which we’ll call a “field” (sometimes,
depending on context we’ll call it a creation or annihilation field)

ψ†(x) =
1√
V

∑
p

a†pe
−ip·x. (36)

(Later, for notational consistency, we’ll substitute φ for ψ. )

� The connection between particles, fields and harmonic oscillators, will
ultimately arise because of the equations of motion governing behaviors
of fields and/or particles in a many-body theory.

� In a full treatment of the many-body system at finite temperatures,
pure-state expectation values are replaced by thermodynamic expec-
tation values which involve something called the density matrix. Lan-
caster manages to stay clear of that subject.

� In chapters 3 and 4, Lancaster covers how to obtain the continuum limit
for large systems, and also how to incorporate relativity by putting time
on an equal footing with space.
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3 Many-body physics, Quantum field theory

and Kabbalah

Many-body physics is about a large finite number of discrete particles,
interacting either with classical or quantum forces.

Quantum Field Theory is about a continuum of entities (the field, at a posi-
tion x).

Both kinds of theory involve the “continuum” of time, but because of rel-
ativity, QFT puts space on an equivalent footing to time. In many-body
physics, we often take continuum spacial limits in order to simplify the gen-
eral mathematics. In QFT, we often discretize the theory in order to solve
specific models.

The conceptual difference is profound. In many-body theory, the continuum
is a mathematical convenience. In QFT, the continuum is The Infinite. Ein
Sof.

!Pֹסו Nאי
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History of infinity: See Wikipedia. An early example is Zeno’s paradox:
Achilles is trying to catch up to a tortoise. Achilles advances to where the
tortoise was at time t0. He arrives at time t1. In the meantime, the tortoise
advances to a new position. Achilles then advances to where the tortoise
was at t1. But in the meantime the tortoise advances to a new position. The
paradox is “this process continues ad infinitum so Achilles doesn’t catch up”.

The notion of infinity shows up in natural science in the time of Newton. For
example, Newton and Leibniz invented calculus, which relies on the idea of
taking the limit of the infinitesimally small as in

df

dt
= lim

∆t→0

f(t+ ∆t)− f(t)

∆t
. (37)

The philosophical use of ∞ is that it represents a (Platonic) idea, whose
mathematical definition requires the precise description of a limiting process.

The limiting process of calculus is quite straightforward. Quantum Field
Theory introduces a new kind of ∞ with a limiting process described by the
techniques of renormalization, associated with the idea of infinitesimally-
small amounts of infinite intermediate energies.

Yet another kind of ∞ shows up in modern cosmology. The boundaries of
our universe are infinitely far away, but again, this concept requires descrip-
tion of the process of approaching those infinite boundaries. The resultant
mathematics leads to the study of celestial holography.

As a completely different manifestation of ∞ is the theory of probability.
Mathematically, this doesn’t appear to require infinity. However, when using
probability to describe physical events (tossing a coin, predicting the weather,
calculating specific heat of a solid), the mathematical principles of probability
only hold when the event – or their circumstances – are repeated an infinite
number of times and therefore the applicability of probability again requires
a description of the limiting process (which is built into the theory).

The miracle (in my opinion) of nature, is that these various kinds of in-
finities (which include the limiting behavior) are relevant. Borrowing from
Wittgenstein, imagine the following world: All coins have heads and tails,
and absolutely nothing distinguishes the weight or physical attributes (other
than the etching) of the two sides of the coin. Yet, coin-flips don’t behave
according to the usual laws of probability. For example, I flip a coin and
exactly 3 times it ends up heads and exactly 3 times it ends up tails, again
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followed by 3 heads etc. But then you flip the coin and you get HTTHT-
THTT... And this is true for all coins. Also something similar for dice, and
for all the usual things we think about with games of chance. Now, I could
still construct a mathematical theory of probability. But it wouldn’t corre-
spond to any of my life experiences and would be of no interest. Worse than
that, life would probably be chaotic and perhaps impossible to understand.
Indeed, maybe there’d be no life since life appears to require some organizing
principles.

4 Complex scalar fields

See Chapter 7 of Lancaster. Some of this theory is used in Chapter 42.

Recall that classical field theory can be described by the following rules:

� Identify the fields of interest.

� Construct a Lagrangian as a function of the fields. Its integral is called
the Action.

� As the fields are varied subject to boundary-value constraints, the Ac-
tion changes. Find the field configurations for which the variations
are extrema of the Action (e.g. a minimum of the Action). These
configurations represent the physics (i.e., what happens in nature).

� These extrema correspond to solutions of partial differential equations
known as the Euler-Lagrange equations. So if you solve those equations,
you predict the future.

Many-body theory follows a slightly different set of rules:

� Identify the single-particle basis states. The Fock space (multiparticle)
basis states will be constructed by providing occupation numbers for
these states.

� Construct a multi-particle Hamiltonian. This is an operator on Fock
space. All such operators can be built as linear combinations of prod-
ucts of annihilation and creation operators.
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� Construct fields out of linear combinations of annihilation and creation
operators and rewrite the Hamiltonian in terms of fields.

� If desired, perform a Legendre transform to bring the theory into La-
grangian form (I believe this can always be done), with equations of
motion obtained from the action principal.

4.1 Example Lagrangian

Define a complex field ψ as

ψ(x) =
1√
2

[φ1(x) + iφ2(x)], (38)

where φ1 and φ2 are real. Then

ψ†(x) =
1√
2

[φ1(x)− iφ2(x)], (39)

where the dagger indicates conjugation (or later, when we deal with opera-
tors, it indicates the adjoint).

The Lagrangian we’ll construct is

L(ψ) = ∂µψ†∂µψ −m2ψ†ψ − g(ψ†ψ)2

=
1

2

(
∂µφ1∂µφ1 + ∂µφ2∂µφ2 −m2(φ2

1 + φ2
2)− 1

2
g
(
φ2

1 + φ2
2

)2
)
.

(40)

In the second line I’ve expanded ψ into its real components φ1 and φ2, to
illustrate that the Lagrangian could have been directly written in terms of
the real fields φ1 and φ2. The use of complex fields is just a notational
convenience. Also, note the resemblance of the first term to the phonon
Lagrangian described in subsection 2.3.2.

4.1.1 Euler-Lagrange equations

The general Euler-Lagrange equations (whose solutions are extrema of the
action) for a complex scalar theory consisting of fields ψ and ψ† are:

∂µ
∂L

∂ (∂µψ)
=
∂L
∂ψ

,

∂µ
∂L

∂ (∂µψ†)
=

∂L
∂ψ†

.

(41)
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Noting that L(ψ) = ∂µψ†∂µψ −m2ψ†ψ − g(ψ†ψ)2, we find

∂L
∂ (∂µψ)

= ∂µψ†,

∂L
∂ (∂µψ†)

= ∂µψ,

∂L
∂ψ

=
(
m2 + 2gψ†ψ

)
ψ†

∂L
∂ψ†

=
(
m2 + 2gψ†ψ

)
ψ

(42)

so that the Euler-Lagrange equations become(
∂µ∂

µ +m2 + 2gψ†ψ
)
ψ = 0(

∂µ∂
µ +m2 + 2gψ†ψ

)
ψ† = 0.

(43)

4.2 Symmetry

Let
ψ → ψeiα, ψ† → ψ†e−iα. (44)

The Lagrangian doesn’t change. This is a continuous symmetry.

5 Canonical quantization of complex scalar

field theory

Lancaster Chapter 12

Recall from the discussion of the harmonic oscillator, Eq. (14), that

[qk, pj] = iδk,j

[qj, qk] = 0

[pj, pk] = 0.

(45)

As Coleman pointed out, the rest of physics seems to be some kind of gener-
alization of the harmonic oscillator.
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� In the classical theory, find the analogue of qi and the analogue of pj
(canonical coordinates and canonical momenta), then promote these to
operators and construct the Hilbert space by requiring that they obey
the CCR (Eq. (2)) and the Euler-Lagrange equations. (In practice,
we only construct an approximate Hilbert space since our methods can
only be used when we assume that it is OK to treat the interaction
term as 0.) Furthermore, use the canonical coordinates and momenta,
together with the Lagrangian, to construct the Hamiltonian.

� For the complex scalar field theory,

qi → Ψ(x) =
(
ψ(x), ψ†(x)

)
pj → Π0(x′) ≡ ∂L

∂ (∂0Ψ)
(x′) =

(
∂0ψ†(x′), ∂0ψ(x′)

) (46)

� Promote the fields to operators (I won’t put hats on them.) Then the
CCR are

[ψ(t,x), ∂0ψ†(t,x′)] = iδ(3)(x− x′)

[ψ(t,x), ψ†(t,x′)] = [ψ(t,x), ψ(t,x′)] = [∂0ψ(t,x), ∂0ψ†(t,x′)] = [∂0ψ(t,x), ∂0ψ(t,x′)] = 0
(47)

� The standard classical construction of the Hamiltonian is, for the full
interacting scalar Lagrangian of Eq. (40)

H = ∂0ψ
†(x)∂0ψ(x) + ∇ψ†(x)∇ψ(x) +m2ψ†(x)ψ(x) + g

(
ψ†(x)ψ(x)

)2

(48)

� The Euler-Lagrange equations are, from Eq. (43):(
∂µ∂

µ +m2 + 2gψ†ψ
)
ψ = 0(

∂µ∂
µ +m2 + 2gψ†ψ

)
ψ† = 0.

(49)

� We can use the CCR and free-particle (g = 0) Euler-Lagrange equations
to construct the Hilbert space, the operators of interest and therefore
the (perturbative approximation to) quantum theory. This is covered
in Lancaster 12.1. The steps are as follows:

– If we set the interaction coefficient g to 0, the Euler-Lagrange
equations are (

∂µ∂
µ +m2

)
ψ(x) = 0. (50)

The solution is a linear combination of eip0te−ip·x = eip·x and
e−ip0teip·x = e−ip·x where p2 = p2

0 − p2 = m2.

19



– By convention we write, where ap(t) and bp(t) are coefficients and

Ep =
√

p2 +m2,

ψ(t,x) =

�
d3p

(2π)
3
2 (2Ep)

1
2

(
ap(t)eip·x + b†p(t)e−ip·x

)
ψ†(t,x) =

�
d3p

(2π)
3
2 (2Ep)

1
2

(
a†p(t)e−ip·x + bp(t)eip·x

) (51)

The second line is obtained from the first by complex conjuga-
tion. These equations can be interpreted as classical equations
with complex fields, or quantum equations with operator-valued
fields (the dagger would then mean “the adjoint” of the opera-
tor). Since these fields must be solutions of the E-L equations,
the t-dependence is given as ap(t) = bp(t) = e−iEpt.

– If we substitute the field-expansions into the canonical commuta-
tion relations, that will lead to equal-time commutation relations
for the coefficients ap(t) and bp(t).

[ap(t), a†q(t)] = [bp(t), b†q(t)] = δ(3)(p− q) (52)

with all other commutator combinations vanishing.

– The ap are known as the particle annihilation operators for mo-
mentum p and the bp are known as the antiparticle annihilation
operators for momentum p. There are reasons for referring to
particles and antiparticles but so far, we haven’t motivated those
names. Starting with the lowest-energy eigenstate of the free
Hamiltonian we create all other states of the Hilbert space by
successive applications of a†p and b†p.

– All operators of interest can be constructed perturbatively as
products of fields or their derivatives, and therefore can be con-
structed out of the annihilation and creation operators. Since
these operators have known behavior on the constructed Hilbert
space, we then know how all operators of interest act on the
Hilbert space.

– There is at least one kind of ambiguity in promoting classical ob-
servables to quantum operators. For example, consider the charge
operator from Lancaster Eq. (12.12).

QN = i

�
d3x

(
ψ(x)∂0ψ†(x)− iψ†(x)∂0ψ(x)

)
. (53)
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Terms classically involving the product of ψ(x) and ∂0ψ† can be
written in operator language either as ψ(x)∂0ψ†(x) or ∂0ψ†(x)ψ(x)
or as some linear combination of these. But ψ(x) and ∂0ψ†(x)
don’t commute with each other, so these various operator ver-
sions aren’t equal to one another. Physicists resolve this ambi-
guity by picking a particular ordering known as normal ordering.
In general, physical results are independent of this ordering, but
sometimes additional criteria must be invoked in order to obtain
an acceptable ordering.

5.1 Some free-theory operators

In scattering problems, a variety of questions can be addressed concerning
physics far from the interaction point. These questions are generally an-
swered by setting the interaction term to 0 and then examining the free
theory. Here we will look at two interesting observables. First we define the
number operators.

n̂ap = a†pap,

n̂bp = b†pbp.
(54)

(I have suppressed the time argument of the annihilation and creation op-
erators since they are not important here.) These number operators count
the number of particles and antiparticles having momentum p. For example,
if we have a state with only particles (no antiparticles) and if the state is
labelled by the number, np, of particles of each possible momentum p, then

n̂ap|np1
, np2

, ..., np, ...〉 = np|np1
, np2

, ..., np, ...〉. (55)

This can be proven by successive applications of the annihilation-creation
commutation relations.

5.1.1 The Hamiltonian

The free Hamiltonian density is given by Eq. (48) with the interaction cou-
pling g set to 0.

H = ∂0ψ
†(x)∂0ψ(x) + ∇ψ†(x)∇ψ(x) +m2ψ†(x)ψ(x). (56)

21



Then the Hamiltonian is H =
�
d3xH. If we plug in the Fourier expansion

(aka mode expansion) of Eq. (51), we find

H =

�
d3pEp

(
n̂ap + n̂bp

)
+ constant (57)

As it happens, the constant is infinite. However, by re-ordering some of
the classical operators in the mode-expansion of the Hamiltonian, we can
eliminate the constant. This is called normal-ordering and Lancaster writes
N [H].

The Hamiltonian expression is interpreted as the sum (integral) over all mo-
menta, of the total energy of particles plus antiparticles having that momen-
tum. The total energy is simply the product of the single-particle energy Ep

times the number of particles and antiparticles with momentum p.

5.1.2 The charge current

We can mode-expand the fields appearing in the expression for the charge
current from Lancaster Eq. (12.12) (also see my section on Noether’s theo-
rem, in my notes entitled “Topics prerequisite to Chapter 42”).

QN = i

�
d3x

(
ψ(x)∂0ψ†(x)− iψ†(x)∂0ψ(x)

)
. (58)

Similarly to the computation for the Hamiltonian, we obtain

QN =

�
d3p
(
n̂bp − n̂ap

)
+ constant. (59)

Again, we can eliminate the constant by normal-ordering. We interpret this
by saying that the total charge is obtained for each momentum as the differ-
ence between the number of antiparticles and particles. This should be remi-
niscent of the usual idea of charge for electrons and positrons. A positron has
a positive charge and an electron has a negative charge, so the total charge
is the difference. This fact ultimately is why we refer to the a and b
as particle and antiparticle annihilation operators.
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5.2 Non-relativistic limit

Lancaster 12.3

Most of our many-body examples involve non-relativistic (small velocity)
motion and therefore should be described by the non-relativistic limit of
QFT. We examine several ways of describing non-relativistic physics using
QFT.

5.2.1 The Schrodinger equation

Start with the Euler-Lagrange equation Eq. (43). However, change the
interaction term to reflect the presence of an external potential.(

∂µ∂
µ +m2

)
ψ + 2mV (x)ψ = 0, (60)

where V (x) is a real-valued function and we multiply by 2m so that later, we
can make the connection with the Schrodinger equation. This is not some
limiting case of the original EL equation, but instead is the limiting case of
a Lagrangian that involves fields other than the charged scalar ψ.

Define a new field (we’ll see why, shortly)

Ψ(x, t) =
√

2mc2ψ(x)eimc
2

(61)

so that

ψ(x, t) =
1√

2mc2
Ψ(x)e−imc

2

, (62)

where we’ve re-introduced the constant c so that we can take the non-
relativistic limit by letting c → ∞. In Eq. (60 substitute ψ in terms of
Ψ to obtain

∂2Ψ

∂t2
− 2imc2∂Ψ

∂t
− c2∇2Ψ + 2mc2V (x)Ψ = 0. (63)

In the large-c limit, the first term can be dropped, leaving

i
∂

∂t
Ψ = − 1

2m
∇2Ψ + VΨ. (64)

This resembles the Schrodinger equation, but in the above expression, Ψ
is an operator, whereas in the usual Schrodinger equation, Ψ is a
state.
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However, if we apply the operators to a state |s〉, then we obtain a Schrodinger
equation for a state ξ = Ψ|s〉.

i
∂

∂t
ξ = − 1

2m
∇2ξ + V ξ. (65)

What we are especially interested in, is the evolution of a state that repre-
sents a single particle. For the time being, I don’t know how to construct an
arbitrary single-particle state by applying Ψ(x) to some state |s〉.

5.2.2 Nonrelativistic canonical quantization – the free theory

Above, we began with the Euler-Lagrange equation and then took the rel-
ativistic limit to construct a Schrodinger equation. Here, we will be more
systematic by starting with the Lagrangian, then taking the non-relativistic
limit. The classical theory was covered in subsection 4.1. We’ll start with the
non-interacting theory (g = 0 or V (x) = 0). The resulting Euler-Lagrange
equation will be the Schrodinger equation for the free theory. In addition,
we can apply the CCR to obtain the mode-expansion.

Recall the Lagrangian we had from Eq. (40), but re-enstating the unit c and
removing the interaction term.

L(ψ) = ∂0ψ
†∂0ψ − c2∇ψ† ·∇ψ −m2c4ψ†ψ. (66)

As in Eq. (62) redefine the field as

ψ(x, t) =
1√

2mc2
Ψ(x)e−imc

2

. (67)

Then the transformed Lagrangian becomes6

L(Ψ) =
1

2mc2
∂0Ψ†∂0Ψ + iΨ†∂0Ψ− 1

2m
∇Ψ† ·∇Ψ. (68)

As before, in the non-relativistic limit we can drop the first term because it
is suppressed by a factor of c2, thus leaving the non-relativistic Lagrangian
as

LNR(Ψ) = iΨ†∂0Ψ− 1

2m
∇Ψ† ·∇Ψ. (69)

6See Lancaster Equation (12.22). Note that the action-term
�
d3x−i2 ∂0Ψ†Ψ can be inte-

grated by parts (assuming the fields drop off quickly to 0 at infinity) to give
�
d3x i2Ψ†∂0Ψ.

As a result, the term in the Lagrangian proportional to i becomes iΨ†∂0Ψ. Lancaster, in
Example 12.3, has a different explanation for this, but I can’t follow his explanation.
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The Euler-Lagrange equation, becomes the (operator) Schrodinger equation
Eq. (64). A solution Ψfree to the (free) Schrodinger equation is

Ψp(x) = ape
−i(Et−p·x)

= ape
−ip·x (70)

where E = p0 = p2/2m, and ap is time-independent. The most general
solution is a linear combination of the Ψp(x) and is written

Ψfree(x) =

�
d3p

(2π)
3
2

ape
−ip·x, (71)

which we call the mode expansion.

We now proceed to canonical quantization following the same procedure as
for Eqs. (45 - 52) at the beginning of this section.

qi → Ψ(x) =
(
Ψ(x),Ψ†(x)

)
pj → Π0(x′) ≡ ∂L

∂ (∂0Ψ)
(x′) =

(
iΨ†(x′), 0

)
.

(72)

Then the CCR becomes

[Ψ(t,x), iΨ†(t,x′)] = iδ3(x− x′). (73)

EXERCISE: Confirm the above CCR (Lancaster exercise (12.2)b)

If we promote the coefficients ap to operators and substitute the mode ex-
pansion into

[Ψfree(t,x), iΨ†free(t,x
′)] = iδ3(x− x′), (74)

we obtain
[ap, a

†
p′ ] = δ(3)(p− p′). (75)

EXERCISE: Confirm this equation.

If we follow the usual procedure for obtaining the Hamiltonian from the
Lagrangian, we find that in the non-relativistic limit

HNR =

�
d3x

1

2m
∇Ψ† ·∇Ψ

=

�
d3x

d3pd3p′

(2π)3

p · p′

2m
a†pap′e

i(p−p′)·x

=

�
d3p

p2

2m
a†pap.

(76)
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thus demonstrating that ap are annihilation operators for particles of kinetic

energy p2

2m
.

5.2.3 Nonrelativistic canonical quantization – the interacting the-
ory

What happens when V (x) 6= 0? In this section, I’ll deviate slightly from Lan-
caster’s presentation but I’ll end with something close to Lancaster’s result.
I start by obtaining the nonrelativistic Euler-Lagrange equations, and solv-
ing these by a transformation to a non-interacting many-body theory whose
individual particles have the eigen-energies of Schrodinger Hamiltonian with
potential V (x). I’ll then show an alternative approach more like Lancaster’s,
and explain the relationship between these two approaches.

Taking the Lagrangian we had from Eq. (40), but re-instating the unit c and
substituting the interaction term,

L(ψ) = ∂0ψ
†∂0ψ − c2∇Ψ† ·∇Ψ−m2c4ψ†ψ − 2mc2V (x)ψ†ψ. (77)

As in Eq. (62) redefine the field as

ψ(x, t) =
1√

2mc2
Ψ(x)e−imc

2

. (78)

Then the transformed Lagrangian becomes

L(Ψ) =
1

2mc2
∂0Ψ†∂0Ψ + iΨ†∂0Ψ− 1

2m
∇Ψ† ·∇Ψ− V (x)Ψ†Ψ. (79)

As before, in the non-relativistic limit we can drop the first term because it
is suppressed by a factor of c2, thus leaving the non-relativistic Lagrangian
as

LNR(Ψ) = iΨ†∂0Ψ− 1

2m
∇Ψ† ·∇Ψ− V (x)Ψ†Ψ. (80)

Notice this is the same as Lancaster Eq. (12.24). We now make an additional
assumption that V is time-independent. I will indicate that by V̂ (x) ≡
V (0,x). Going forward, I will drop the hat and write V (x).

The Euler-Lagrange equation, following the same procedure as before, gives
us the Schrodinger equation

i
∂

∂t
Ψ = − 1

2m
∇2Ψ + VΨ. (81)
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When the potential is 0 (the free theory), the Schrodinger equation is solved
as a superposition of plane waves. Then our quantization procedure leads to
a set of creation and annihilation operators for plane wave momentum states.
For a more general potential, we have different solutions leading to different
annihilation and creation operators. I’ll treat the general situation by taking
a brief detour to standard quantum mechanics.

We start by finding the eigenstates of the operator (acting on the Hilbert
space of time-independent complex functions of x).

Ê = − 1

2m
∇2 + V (x). (82)

Let’s label the eigenfunction as ψn(x), noting that here, ψn is an ordinary
complex function and not an operator. The index n labels the eigenfunction
and, in general for 3D systems, is often described as a triplet n = (n1, n2, n3).
We are solving

Êψn(x) = Enψn(x), (83)

thus (
− 1

2m
∇2 + V (x)

)
ψn(x) = Enψn(x). (84)

As an example, if V is a 3D linear harmonic oscillator potential, then the
eigenfunctions are products of Hermite polynomials and exponentials.

With appropriate normalization7, it can be shown that the eigensolutions
obey the orthonormality relations

�
d3xψn(x)ψ∗m(x) = δmn (85)

Next, with an abuse of notation, we define ψn(t,x) = e−iEntψn(x). It’s easy
to check that

i
∂

∂t
ψn(t,x) =

(
− 1

2m
∇2 + V

)
ψn(t,x), (86)

and therefore that ψn(t,x) is a solution to the Schrodinger equation. We can
show that the most general solution to the Schrodinger equation is of the
form ψ(t,x) =

∑
n anψn(t,x), where the an are complex coefficients.

7To be more precise, we should focus for now on situations where there aren’t two
independent solutions with the same eigenvalue. That situation is known as degeneracy
and can be resolved so that all our key results come out the same.
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Now let’s return to our operator Schrodinger equation, Eq. (81). We can
solve this by taking the above general solution and promoting the coefficients
an to operators ân. So

Ψ(x) =
∑
n

ânψn(t,x)

=
∑
n

ânψn(x)e−iEnt
(87)

From the orthonormality relations, Eq. (85 ), we then have

ân =

�
d3xΨ(t,x)ψ∗n(x)eiEnt. (88)

Then

[ân, â
†
m] =

�
d3xd3x′

[
Ψ(t,x),Ψ†(t,x′)

]
ψ∗n(x)ψm(x′)e−i(Em−En)t

=

�
d3xd3x′δ3(x− x′)e−i(Em−En)tψ∗n(x)ψm(x′)

=

�
d3xe−i(Em−En)tψ∗n(x)ψm(x)

= δnm

(89)

where we used in the second line, the CCR from Eq. (73)8, [Ψ(t,x), iΨ†(t,x′)] =
iδ3(x− x′).

We can also derive the Hamiltonian density operator starting from Lancaster
Eq. 12.26.

H =
1

2m
∇Ψ† ·∇Ψ + V (x)Ψ†Ψ. (90)

It is also worth pointing out that when integrated over x this expression for
the Hamiltonian is also the expression for the “conserved Noether charge”
associated with time-translation symmetry. In particular, the time-derivative

8The derivation of those CCR turns out to be exactly the same for our interacting
theory as for the free theory.
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of the Hamiltonian is 0. If we substitute Eq. (87), we get

H =

�
d3xH(x)

=

�
d3x

(
1

2m
∇Ψ†(x) ·∇Ψ(x) + V (x)Ψ†(x)Ψ(x)

)
=

�
d3xΨ†(x)

(
− 1

2m
∇2 + V (x)

)
Ψ(x)

=

�
d3x

∑
n

∑
m

â†nâmψ
∗
n(t,x)

(
− 1

2m
∇2 + V (x)

)
ψm(t,x)

=

�
d3x

∑
n

∑
m

â†nâmψ
∗
n(t,x)Emψm(t,x)

=
∑
n

Enâ
†
nân

(91)

where the third line is obtained through integration-by-parts, the fourth line
is obtained by substituting Eq. (87), the fifth line is obtained from the eigen-
value equation for Ê and the last line is obtained from the orthonormality
relations.

It’s important to note that in the final expression for the Hamiltonian opera-
tor, the role of â†nân is that of a counting operator, rather than as an operator
which identifies the energy-state of a particle. We see this, because En is not
proportional to an integer whereas the eigenvalues of â†nân are integers. We
have therefore shown that the operators ân and â† are annihilation and cre-
ation operators for particles of energy En. Note that this is nothing like
Lancaster’s result.

Now let’s turn to an approach closer to Lancaster’s. The field Ψ(t,x) can be
Fourier-expanded as

Ψ(t,x) =

�
d3p

(2π)
3
2

eip·xap(t). (92)

For notational consistency with other texts, define ap ≡ ap(0).

For the free-field theory, the time-dependence of ap(t) is required to be
ap(t) = ape

−iEpt, in order for Ψ to be a solution of the field Schrodinger
equation. Ep is the kinetic energy. However, for the interacting theory, that
time-dependence would be wrong since it doesn’t account for the potential V .
Let’s therefore proceed with an arbitrary time-dependence of the coefficient.
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The reverse Fourier-transform becomes

ap(t) =

�
d3x

(2π)
3
2

e−ip·xΨ(t,x). (93)

Now we can promote the coefficients to operators and take the equal-time
commutators.

[ap(t), a†p′(t)] =

�
d3xd3x′

(2π)3
e−i(p·x−p

′·x′)[Ψ(t,x),Ψ†(t,x′)]

=

�
d3xd3x′

(2π)3
e−i(p·x−p

′·x′)δ3(x− x′)

=

�
d3x

(2π)3
e−i(p−p

′)·x

= δ3(p− p′).

(94)

We have therefore shown that ap(t) is an annihilation operator and its adjoint
is a creation operator. This is similar to what Lancaster has, except for the
fact that the annihilation and creation operators are now time-dependent.

The full interacting Hamiltonian is given in Eq. (90) as

H =
1

2m
∇Ψ† ·∇Ψ + V (x)Ψ†Ψ (95)

and can be expanded similarly to the lines of Eq. (91) but by substituting
Eq. (92).

H =

�
d3xH(t,x)

=

�
d3x

(
1

2m
∇Ψ†(t,x) ·∇Ψ(t,x) + V (x)Ψ†(t,x)Ψ(t,x)

)
=

�
d3xΨ†(t,x)

(
− 1

2m
∇2 + V (x)

)
Ψ(t,x)

=

�
d3x

d3pd3q

(2π)3
e−ip·xa†p(t)aq(t)

(
− 1

2m
∇2 + V (x)

)
eiq·x

=

�
d3p

p2

2m
a†p(t)ap(t) +

�
d3x

d3pd3q

(2π)3
e−i(p−q)·xa†p(t)aq(t)V (x)

=

�
d3p

p2

2m
a†p(t)ap(t) +

�
d3pd3qa†p(t)aq(t)Ṽ (p− q),

(96)

where, for an arbitrary function of x,

f̃(p− q) ≡
�

d3x

(2π)3
f(x)e−i(p−q)·x. (97)
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Above, the third line is obtained through integration-by-parts and the fourth
line is obtained by substituting Eq. (92).

As observed earlier, the Hamiltonian is time-independent. Therefore we can
evaluate it at time t = 0. We can then substitute our definition ap ≡ a0(t)
to obtain

H =

�
d3p

p2

2m
a†pap +

�
d3pd3qa†paqṼ (p− q) (98)

Finally, we can find a relationship between these p-mode operators and those
obtained earlier for a mode decomposition in terms of eigensolutions to the
Schrodinger equation. I don’t have any examples showing how this relation-
ship would be used, but derive it here for completeness.

Recall Eq. (87)

Ψ(x) =
∑
n

ânψn(x)e−iEnt, (99)

and apply this to Eq. (93).

ap(t) =
∑
n

�
d3x

(2π)
3
2

e−ip·xânψn(x)e−iEnt. (100)

Lancaster, at the end of Example 12.4, makes some comments about a time-
dependent aspect of his equation for the Hamiltonian. I don’t follow his
remarks, but suspect that their origin might be similar to those having to do
with the time-dependence of my annihilation operators.

6 Non-relativistic many-body theory of fluids

The idea is to cast NRMB (non-relativistic many-body theory) into the same
formalism as quantum field theory. Here is a (hopefully) simple argument
for why this can be done:

� We saw in the QFT discussion, that the Lagrangian formulation of
quantum field theory leads directly to a Fock space with a momentum-
state occupation-number representation that can be implemented with
ladder operators.
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� Conversely, if we start with such a representation and implementation,
we can construct a Lagrangian quantum field theory for it.

� The resulting theory has the same free part as QFT. The interactive
part is obtained from the interaction-Hamiltonian, noting that LI =
−HI .

9

� As for the question of non-relativistic versus relativistic, we can ap-
proach this in several ways but in principle it’s simply a matter of
taking the non-relativistic limit of the QFT theory.

6.1 Example with single-particle operators

I’ll illustrate this with an example which begins by focusing on a particularly
simple interaction Hamiltonian based on “single-particle operators”. An ex-
cellent treatment of this is given in Lancaster 4.2 and 4.4 (note that 4.3 is
a digression – a fact which originally confused me quite a bit). A similar
excellent treatment can be found in Landau and Lifshitz Vol. 3 section 64
(in fact, I found this treatment a bit clearer but that’s probably because I
initially underestimated the power and importance of Lancaster).

The single-particle-operator example is meant to be an approximation de-
scribing some kinds of fluids.

HI =
N∑
a=1

ha (101)

where the sum is over particles, and ha is a single-particle Hamiltonian. We
take N to be very large. Furthermore, ha acts on the Hilbert space of a
single particle, with momentum basis |ki〉, so that 〈ki|ha|kj〉 is independent
of the index a. This form of the interaction Hamiltonian assures that the
Hamiltonian maintains the indistinguishability (e.g. symmetry) of particles.

We can show in general that HI can be written as

HI =
∑
αβ

(HI)αβ a
†
αaβ (102)

9Strictly speaking, this equation is true only when the interaction Hamiltonian doesn’t
involve time-derivatives.
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where the annihilation and creation operators are with respect to single-
particle basis functions. We’ll illustrate this with a particular case using
momentum basis states in a coordinate-representation.

Consider for example, single-particle momentum basis functions ψk1(x), ψk2(x), ...,
which we can also write as 〈x|k1〉, 〈x|k2〉, .... The multi-particle system has
wavefunction ψ (x1,x2, ...) = ψk1(x1)ψk4(x2)...+ ψk4(x1)ψk1(x2)...+ .... The
sum is over all permutations of the single-particle states comprising the multi-
particle wavefunction. Then let ha act on a single-particle state as V (x)ψ(x).

h1ψ = (V (x1)ψk1(x1))ψk4(x2)...+ (V (x1)ψk4(x1))ψk1(x2)...

h2ψ = ψk1(x1) (V (x2)ψk4(x2)) ...+ ψk5(x1) (V (x2)ψk1(x2)) ...
(103)

etc. From this we immediately see that HI |ψ〉 = (
∑

a V (xa)) |ψ〉.

Now we need to write HI in terms of the fundamental field ψ of our theory.
We begin by writing HI using the momentum-state annihilation and creation
operators which we define as the operators that create momentum states from
the vacuum, namely ak|0〉 = |k〉. For this, we invoke Lancaster Eqs. (4.17)
and (4.18) (Lancaster provides the nontrivial proof of Eq. (4.18) in example
4.3.) First we take the continuum limit. Then we write

V =

�
d3k1d

3k2Vk1k2|k1〉〈k2|. (104)

We observe that the result of V operating on a momentum basis state10 is

〈x|V |k〉 = V (x)〈x|k〉 = V (x)eik·x, (105)

so that �
d3xe−ik

′·x〈x|V |k〉 =

�
d3xV (x)ei(k−k

′)·x. (106)

We can also evaluate the LHS of the above equation by using Eq. (104).

�
d3xe−ik

′·x〈x|V |k〉 =

�
d3xd3k1d

3k2e
−ik′·xVk1k2〈x|k1〉〈k2|k〉

=

�
d3xd3k1d

3k2e
−i(k′−k1)·xVk1k2δ

3(k2 − k)

= (2π)3Vk′k.

(107)

10For ease of notation I haven’t included normalization factors in the momentum-state
wavefunctions.
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Finally, setting the LHS above to the RHS of Eq. (106) we get

Vk′k =
1

(2π)3

�
d3xV (x)ei(k−k

′)·x. (108)

Compare this to Lancaster Eq. (4.36). Having obtained Vk′k we now use
Lancaster Eq. (4.18) to show, in the continuum limit, that 11

HI =

�
d3k1d

3k2Vk1k2a
†
k1
ak2 . (109)

We also have, as usual, the free part of the Hamiltonian in the non-relativistic
continuum limit, as

H0 =

�
d3k

k2

2m
a†kak. (110)

Setting Vk1k2 → Ṽ (k1−k2), and then changing the integration variables, the
full Hamiltonian becomes

H =

�
d3p

p2

2m
a†pap +

�
d3pd3qa†paqṼ (p− q) (111)

with

Ṽ (p− q) =
1

(2π)3

�
d3xV (x)e−i(p−q)·x. (112)

We see that this is precisely the same expression as we had in Eqs. (98)
and (97) which we obtained from the Lagrangian theory given in Eq. (80).12

EXERCISE: Confirm the above two equations, and then show the steps that
would take us from Eq. (80) to the above equations.

6.2 Some observations

� As mentioned much earlier in this presentation, the continuum limit is
a mathematical approximation of the many-body theory. It is meant
to be valid in the limit where momenta spacings are small, momenta
ranges (largest values) are large and number of particles is infinite. The

11Lancaster doesn’t appear to explain, in chapter 4.2, why his expressions are written in
the form a†αaβ rather than aβa

†
α. The order matters when α = β and ultimately the choice

differs by a constant (unfortunately the constant is infinite). By convention, we place the
creation operators to the left of the annihilation operators. That is called normal ordering
and is discussed by Lancaster in chapter 4.4.

12Recall that this non-relativistic Lagrangian was obtained as the low-energy limit of a
fully relativistic Lagrangian.
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limiting procedure can be controlled by careful choices of boundary
conditions are other regularization methods. When these limits are
taken, field theory methods can be used to derive general behaviors of
the many-body theory under consideration.

� The single-operator Hamiltonian can be interpreted as follows: The
lowest-order (i.e. most important) interactions can be interpreted as
transitions where a particle changes from one momentum state to an-
other. The annihilation operator describes the momentum state that
the particle was in before the transition, and the creation operator de-
scribes the momentum state that the paricle is in after the transition.
By symmetry, the interaction-Hamiltonian is a sum over all such tran-
sitions, weighted by a potential function representing a common force
acting on single particles in the fluid (for example, if we think of the
particles as electrons, then the force might be an average of positive
nuclear forces).

� So far, we’ve been vague about the meaning of particles and fields in
many-body theory. For example, we’ve pointed out that coupled parti-
cles have collective behaviors that can be interpreted as other particles
called phonons. This allows us to re-think our system as a collec-
tion of phonons with an interaction Hamiltonian pertaining to forces
on the phonons. As indicated by our single-particle-operator example,
we could then derive a field theory that embodies both the phonons
and their Hamiltonian. In this way of looking at things, the field is
purely a mathematical convenience. However, like all mathematical
conveniences it has a life of its own. The field evolves partly based on
its coupling to other parts of the system, and the field has correlation
properties that can affect various observables, some of which are collec-
tive behaviors of the underlying phonons of the theory (and therefore
of the original coupled particles). The field is then called an order pa-
rameter . One might argue that all the same kinds of things are true
about quantum field theory, so sometimes those fields are also known
as order parameters. The main difference in approach is that for QFT,
the fundamental interactions are hypothesized to occur between the
fields, whereas in many-body theory, the fundamental interactions are
hypothesized to occur between particles.
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6.3 Two-body interactions

This section follows Lancaster chapter 4.4 and is also covered by Landau and
Lifshitz Volume 3 section 64. The one-body example is unable to capture
the effects of two-body interactions such as Coulomb interactions. Let the
general two-body interaction be

H
(2)
I =

N∑
a<b

hab. (113)

Following Lancaster, or Landau and Lifshitz, and with similar arguments for
the case of the one-particle operators, we can show that the general form of
two-body interaction Hamiltonian is

H
(2)
I =

∑
αβγδ

(
H

(2)
I

)
αβγδ

a†αa
†
βaγaδ. (114)

An example two-particle operator acting on a two-particle state, would be
V (x − y) (ψ1(x)ψ2(y) + ψ1(y)ψ2(x)). Lancaster shows for this case (in the
continuum limit), that

H
(2)
V =

1

2

�
d3p1d

3p2d
3qṼ (q)a†p1+qa

†
p2−qap2

ap1
, (115)

where Ṽ is defined by Eq. (112). Note that this can be described by the
schematic

Through an argument similar to what we obtained starting with Eq. (80)
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the above theory can be obtained from a (non-relativistic) action

S(Ψ) =

�
d3x

[
iΨ†∂0Ψ− 1

2m
∇Ψ† ·∇Ψ

]
−1

2

�
d3xd3yΨ†(x)Ψ†(y)V (x−y)Ψ(y)Ψ(x)).

(116)

Notice that operators have been placed in normal order (creation operators
to the left of annihilation operators). Lancaster explains this in chapter 4.4.
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