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1 Principles of a quantum many-body theory

Goal: Set up a mathematical theory of quantum many-body physics which
satisfies the following principles:

� It can be described by an Action Principle involving the integral (known
as The Action) of a real Lagrangian function of complex fields (a form of
generalized coordinates) and their time-derivatives. The Action Prin-
ciple is satisfied by solutions to the Euler-Lagrange equations.

� The Action is invariant under known physical symmetry transforma-
tions of the theory. Examples include Poincare invariance for relativis-
tic theories or Galilean invariance for non-relativistic theories.

� There is a Hamiltonian that governs time-dependence of the system
and can be written as a sum of a free term describing free particles,
and an interaction term. The Hamiltonian and Lagrangian can be
obtained from one another according to a procedure known as a Leg-
endre transformation, which involves the introduction of momentum
functions.

� Thusfar, the theory is classical. The quantum theory is derived by
Dirac’s principles:

– Promote the (field) generalized coordinates and momenta to op-
erators on a (as-yet-unspecified) Hilbert space.
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– Impose canonical commutation relations (CCR) between the gen-
eralized coordinate and momenta operators.

– Find a representation (i.e. a Hilbert space on which the operators
act) on which the operators obey the CCR and the Euler-Lagrange
equations for the free theory.

� We impose one more requirement: The free theory (same La-
grangian as above without the interaction term) has a Hilbert
space occupation-number representation

|ψN〉 = |N1, N2, ...〉 (1)

such that the free Hamiltonian has an energy spectrum

EψN
=
∑
i

NiEi + constant (2)

where Ei is the energy of the ith mode and Ni is the number
of particles in the ith mode.

I will illustrate how to do this both for a relativistic quantum field theory
and for a non-relativistic many-body fluid theory. The critical distinction
between these types of theories, is that the non-relativistic (NR) theories
require particle conservation whereas the relativistic (R) theories require the
ability to create and annihilate particles. I’ll discuss this point and others in
a later subsection.

2 Relativistic quantum field theory – exam-

ple

� We’ll start with the action S defined as a function of the complex field
ψ.

S[ψ] =

�
d4xL(ψ)(x) (3)

where
L(ψ) = ∂µψ†∂µψ −m2ψ†ψ − g(ψ†ψ)2. (4)

The Action Principle states that we look for solution fields ψS(x) so
that S is an extremum, δS[ψS] = 0. These solution fields can be shown
to satisfy the Euler-Lagrange equation(

∂µ∂
µ +m2 + 2gψ†SψS

)
ψS = 0 (5)
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and its complex conjugate.

� Notice that if we define ψ̃(x) = ψ(Λx), where Λ is a Lorentz transfor-
mation matrix operating on the 4-vector x, then S[ψ̃] = S[ψ]. This
expresses symmetry under Lorentz transformations (i.e., the theory is
Lorentz invariant).

� The Hamiltonian for this theory can be obtained in the usual way from
the Lagrangian1

H = ∂0ψ
†(x)∂0ψ(x) + ∇ψ†(x)∇ψ(x) +m2ψ†(x)ψ(x) + g

(
ψ†(x)ψ(x)

)2
(8)

The time t can be set to any value since H is time-independent. We’ve
arbitrarily set t = 0. The free Hamiltonian H0 is

H0 =

�
d3x

(
∂0ψ

†(x)∂0ψ(x) + ∇ψ†(x)∇ψ(x) +m2ψ†(x)ψ(x)
)
, (9)

and the interaction Hamiltonian HI is

HI =

�
d3xg

(
ψ†(x)ψ(x)

)2
. (10)

� To quantize the theory, we now declare ψ to be an operator. The (free,
g = 0) E-L equation has a general solution

ψS(t,x) =

�
d3p

(2π)
3
2 (2Ep)

1
2

(
ape

−i(Ept−p·x) + b†pe
i(Ept−p·x)

)
(11)

where Ep =
√

p2 +m2 and ap and bp are operators on the Hilbert
space. This expression is often called the mode expansion, where the
ap and bp are the mode operators. The momentum is φ̇, so the only
nontrivial CCR is [ψ(t,x), ψ̇(t,x′)] = iδ3(x− x′). This can be applied
to the above solution of the E-L equation.

1The momentum is defined by

Π0(x′) ≡ ∂L
∂ (∂0Ψ)

(x′) =
(
∂0ψ†(x′), ∂0ψ(x′)

)
(6)

where the generalized coordinates and momenta Ψ and Π0 are defined by

Ψ(x) =
(
ψ(x), ψ†(x)

)
Π0(x′) ≡ ∂L

∂ (∂0Ψ)
(x′) =

(
∂0ψ†(x′), ∂0ψ(x′)

) (7)

and the Hamiltonian is related to the Lagrangian by H =
�
d3x

(
Π0 · Ψ̇− L

)
.
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� By substituting the mode expansion into the CCR, we find that [ap, a
†
p′ ] =

[bp, b
†
p′ ] = δ3(p − p′) and other equal-time commutators are 0. These

are the defining equations for ladder operators. One consequence of
this, is that we can construct our Hilbert space as follows:

– Assume that there is a state |0〉 with the property that ap|0〉 =
bp|0〉 = 0 for all momenta p. This state is called the vacuum.

– Then we can construct the normalized state |n(a)
p 〉 =

(a†p)
n
(a)
p√

n
(a)
p !
|0〉

which has the property a†pap|n
(a)
p 〉 = n

(a)
p |n(a)

p 〉 and the normal-

ized state |n(b)
p 〉 =

(a†p)
n
(b)
p√

n
(b)
p !
|0〉 which has the property a†pap|n

(b)
p 〉 =

n
(b)
p |n(b)

p 〉.
– Our Hilbert space is the Fock space constructed from the basis set
|n(a)

p1
〉 ⊗ ...⊗ |n(a)

pm
〉 ⊗ |n(b)

p′
1
〉 ⊗ ...⊗ |n(b)

p′
m
〉.

� The Fock space basis is an occupation number basis with |n(a)
p1
, ..., n

(a)
pm
, n

(b)

p′
1
, ..., n

(b
p′
m
〉 ≡

|n(a)
p1
〉 ⊗ ...⊗ |n(a)

pm
〉 ⊗ |n(b)

p′
1
〉 ⊗ ...⊗ |n(b)

p′
m
〉. If we substitute the mode ex-

pansion for the fields that appear in the expression Eq. (9) for the free
Hamiltonian, we find that

H0|n(a)
p1
, ..., n(a)

pm
, n

(b)

p′
1
, ..., n

(b
p′
m
〉 =(

m∑
i=1

(
n(a)
pi
Epi

+ n
(b)

p′
i
Ep′

i

)
+ constant

)
|n(a)

p1
, ..., n(a)

pm
, n

(b)

p′
1
, ..., n

(b)
p′
m
〉.

(12)

3 Non-relativistic many-body theory of fluids

The idea is to cast NRMB (non-relativistic many-body theory) into the same
formalism as quantum field theory. Here is a (hopefully) simple argument
for why this can be done:

� We saw in the QFT discussion, that the Lagrangian formulation of
quantum field theory leads directly to a Fock space with a momentum-
state occupation-number representation that can be implemented with
ladder operators.
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� Conversely, if we start with such a representation and implementation,
we can construct a Lagrangian quantum field theory for it.

� The resulting theory has the same free part as QFT. The interactive
part is obtained from the interaction-Hamiltonian, noting that LI =
−HI .

2

� As for the question of non-relativistic versus relativistic, we can ap-
proach this in several ways but in principle it’s simply a matter of
taking the non-relativistic limit of the QFT theory.

3.1 Non-relativistic limit of QFT

I’ll begin with the last bullet above by first discussing the non-relativistic
limit of the free QFT theory discussed in the previous section.

We take the Lagrangian of Eq. (4), set g = 0 and reinstate the unit c.

L(ψ) = ∂0ψ
†∂0ψ − c2∇ψ† ·∇ψ −m2c4ψ†ψ. (13)

Then redefine the field in terms of a new field Ψ.

ψ(x, t) =
1√

2mc2
Ψ(x)e−imc

2

. (14)

The transformed Lagrangian becomes3

L(Ψ) =
1

2mc2
∂0Ψ

†∂0Ψ + iΨ†∂0Ψ−
1

2m
∇Ψ† ·∇Ψ. (15)

In the non-relativistic limit we can drop the first term because it is suppressed
by a factor of c2, thus leaving the non-relativistic Lagrangian as

LNR(Ψ) = iΨ†∂0Ψ−
1

2m
∇Ψ† ·∇Ψ. (16)

A general solution Ψfree of the Euler Lagrange equation for this Lagrangian
is the mode expansion

Ψfree(x) =

�
d3p

(2π)
3
2

ape
−i(Et−p·x), (17)

2Strictly speaking, this equation is true only when the interaction Hamiltonian doesn’t
involve time-derivatives.

3See Lancaster Equation (12.22). Note that the action-term
�
d3x−i2 ∂0Ψ†Ψ can be inte-

grated by parts (assuming the fields drop off quickly to 0 at infinity) to give
�
d3x i

2Ψ†∂0Ψ.
As a result, the term in the Lagrangian proportional to i becomes iΨ†∂0Ψ.
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where E = p0 = p2/2m, and ap is time-independent. Note that this solution
does not require the bp modes. All of this analysis can be applied when
the Lagrangian has an interaction term, but there is a different
time-dependence in the mode expansion. We can absorb all time-
dependence into the mode coefficients ap. In expressions for the
full Hamiltonian – which is time-independent – the mode time-
dependence can be suppressed by arbitrarily setting t = 0.

We now proceed to canonical quantization following the same procedure we
used earlier. The generalized coordinates and momenta can be inferred from
the non-relativistic Lagrangian as

Ψ(x) =
(
Ψ(x),Ψ†(x)

)
Π0(x′) ≡ ∂L

∂ (∂0Ψ)
(x′) =

(
iΨ†(x′), 0

)
,

(18)

leading to the canonical commutation relations

[Ψ(t,x), iΨ†(t,x′)] = iδ3(x− x′). (19)

If we promote the coefficients ap to operators and substitute the mode ex-
pansion into

[Ψfree(t,x), iΨ†free(t,x
′)] = iδ3(x− x′), (20)

we obtain
[ap, a

†
p′ ] = δ(p− p′). (21)

If we follow the usual procedure for obtaining the Hamiltonian from the
Lagrangian, we find that in the non-relativistic limit

HNR =

�
d3x

1

2m
∇Ψ† ·∇Ψ

=

�
d3x

d3pd3p′

(2π)3
p · p′

2m
a†pap′ei(p−p

′)·x

=

�
d3p

p2

2m
a†pap.

(22)

thus demonstrating that ap are annihilation operators for particles of kinetic

energy p2

2m
.
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3.2 Example: one-body forces

I’ll illustrate the procedure for creating a field theory – in Lagrangian form –
from a simple many-body theory, with an example where I begin by focusing
on the interaction Hamiltonian. An excellent treatment of this is given in
Lancaster 4.2.

The example will be a fluid whose interaction Hamiltonian is given by

HI =
N∑
a=1

ha (23)

where the sum is over particles, and ha is a single-particle Hamiltonian. We
take N to be very large. Furthermore, ha acts on the Hilbert space of a
single particle, with momentum basis |ki〉, so that 〈ki|ha|kj〉 is independent
of the index a. This form of the interaction Hamiltonian assures that the
Hamiltonian maintains the indistinguishability (e.g. symmetry) of particles.

Consider for example, single-particle momentum basis functions ψk1(x), ψk2(x), ...,
which we can also write as 〈x|k1〉, 〈x|k2〉, .... The multi-particle system has
wavefunction ψ (x1,x2, ...) = ψk1(x1)ψk4(x2)...+ ψk4(x1)ψk1(x2)...+ .... The
sum is over all permutations of the single-particle states comprising the multi-
particle wavefunction. Then let ha act on a single-particle state as V (x)ψ(x).

h1ψ = (V (x1)ψk1(x1))ψk4(x2)...+ (V (x1)ψk4(x1))ψk1(x2)...

h2ψ = ψk1(x1) (V (x2)ψk4(x2)) ...+ ψk5(x1) (V (x2)ψk1(x2)) ...
(24)

etc. From this we immediately see that HI |ψ〉 = (
∑

a V (xa)) |ψ〉.

We begin our analysis by writing HI using the momentum-state annihilation
and creation operators which we define as the operators that create mo-
mentum states from the vacuum, namely ak|0〉 = |k〉. Following Lancaster
Chapter 4.1, we can show that

HI =

�
d3k1d

3k2Vk1k2a
†
k1
ak2 . (25)

where

Vk′k =
1

(2π)3

�
d3xV (x)ei(k−k

′)·x. (26)

We also have, as usual, the free part of the Hamiltonian in the non-relativistic
continuum limit, as

H0 =

�
d3k

k2

2m
a†kak. (27)
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Setting Vk1k2 → Ṽ (k1−k2), and then changing the integration variables, the
full Hamiltonian becomes

H =

�
d3p

p2

2m
a†pap +

�
d3pd3qa†paqṼ (p− q) (28)

with

Ṽ (p− q) =
1

(2π)3

�
d3xV (x)e−i(p−q)·x. (29)

We can use the mode expansion of Eq. (17) to show that the second term of
the Hamiltonian is equivalent to�

d3xV (x)Ψ†(x)Ψ(x). (30)

Note that we have replaced Ψfree with Ψ because our theory is no longer free.
See the discussion in the last section explaining that the mode expansion
is still valid, and that when the mode operators (which, in the interacting
theory, are time-dependent) appear in the full Hamiltonian, they can be
taken at t = 0.

The above Hamiltonian consists of a free part which is the same as we ob-
tained in Eq. (22) and which is derived from the non-relativistic free La-
grangian of Eq. (16) and an interactive part which is −

�
d3xLI . We’ve

therefore shown that our one-body-force many-body theory is obtained from
the Lagrangian

L(Ψ) = iΨ†∂0Ψ−
1

2m
∇Ψ† ·∇Ψ− V (x)Ψ†(x)Ψ(x). (31)

3.3 Example: two-body forces

This section follows Lancaster chapter 4.4. The one-body example is unable
to capture the effects of two-body interactions such as Coulomb interactions.
Let the general two-body interaction be

H
(2)
I =

N∑
a<b

hab. (32)

Following Lancaster, we can show that the general form of two-body inter-
action Hamiltonian is

H
(2)
I =

∑
αβγδ

(
H

(2)
I

)
αβγδ

a†αa
†
βaγaδ. (33)

8



An example two-particle operator acting on a two-particle state, would be
V (x − y) (ψ1(x)ψ2(y) + ψ1(y)ψ2(x)). Lancaster shows for this case (in the
continuum limit), that

H
(2)
V =

1

2

�
d3p1d

3p2d
3qṼ (q)a†p1+qa

†
p2−qap2

ap1
, (34)

where Ṽ is defined by Eq. (29). Note that this can be described by the
schematic

Through an argument similar to what we obtained starting with Eq. (??)
the above theory can be obtained from a (non-relativistic) action

S(Ψ) =

�
d3x

[
iΨ†∂0Ψ−

1

2m
∇Ψ† ·∇Ψ

]
−1

2

�
d3xd3yΨ†(x)Ψ†(y)V (x−y)Ψ(y)Ψ(x)).

(35)

4 Observations

� The usual implementation of the Principles in Section 1, involves an
infinite number of particles. This is a natural outcome of theories whose
boundaries are infinite or theories with periodic boundary conditions.
Physical many-body theories have a large but finite number of particles
but most results are insensitive to the finiteness or boundary effects.

� The occupation-number quantization construction both for NR and R
theories, depends on the mathematical trick of ladder operators (from
the CCR) combined with the solution of simple differential equations
(the E-L equations).
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� The ladder operators are useful for finding the spectrum of harmonic
oscillators but our many-body constructions have nothing to
do with harmonic oscillators!

� The occupation-number representation is required because particles
are indistinguishable.

� For this kind of field theory formalism, the occupation-number repre-
sentation is a natural outcome and therefore field theory is a natural
way of describing the theory of many indistinguishable particles.

� In nature, what distinguishes relativistic and non-relativistic theories,
is simply the typical speeds and energies of the systems being described.
The non-relativistic theory is just the low-speed approximation of the
relativistic theory.

� In non-relativistic theories, the energies are insufficient to allow the
creation of massive particles. Thus the low-energy approximation for a
theory of massive particles, will automatically lead to (heavy) particle
conservation.
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