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These notes follow Chapter 42 of Lancaster. Another reference I’ve found,
which provides far more context and details, is https://www-thphys.physics.
ox.ac.uk/people/SteveSimon/QCM2020/QuantumMatterMostRecent.pdf.

1 The superfluid Hamiltonian

From Lancaster Chapter 4 and my previous notes, we had the following
action for a general non-relativistic bosonic many-body theory with only 2-
body interactions.1

S(φ) =

�
d3x

[
iφ†∂0φ−

1

2m
∇φ† ·∇φ

]
−1

2

�
d3xd3yφ†(x)φ†(y)V (x−y)φ(y)φ(x).

(1)

From this, we can derive the Hamiltonian

H =
1

2m

�
d3x∇φ† ·∇φ+

1

2

�
d3xd3yφ†(x)φ†(y)V (x− y)φ(y)φ(x). (2)

Our simplifying assumption, which we’ll use for examining superfluids, is
that the molecules aren’t affected by any “background” potential (hence no
1-body interactions) and that the 2-body interaction is point-like – namely,
V (z) = gδ(3)(z) where g is a coupling constant.

1In my previous notes I used the complex field ψ but for consistency with Lancaster
Eq. (42.1) I have substituted the complex field φ
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Then

H =
1

2m

�
d3x∇φ† ·∇φ+

g

2

�
d3xd3yφ†(x)φ†(y)φ(y)φ(x)δ(3)(x− y). (3)

( Recall that Ṽ (p) = 1
(2π)3

�
d3xV (x)e−ip·x, so by plugging in the delta-

function we get Ṽ (p) = g
(2π)3

, which is independent of momentum. )

As previously shown (Lancaster 4.2 and my notes), this expression can be
cast into a form using annihilation and creation operators, as

H =

�
d3p

p2

2m
a†pap +

1

2

�
d3p1d

3p2d
3qṼ (q)a†p1+qa

†
p2−qap2

ap1

=

�
d3p

p2

2m
a†pap +

g

2

1

(2π)3

�
d3p1d

3p2d
3qa†p1+qa

†
p2−qap2

ap1

=

�
d3p

p2

2m
a†pap +

g

2

1

(2π)3

�
d3kd3pd3qa†k+qa

†
p−qapak.

(4)

As usual, we put the system in a box of volume V , so that the momenta
become discrete, and we get

H ≈
∑
p

p2

2m
a†pap +

g

2V
∑
kpq

a†k+qa
†
p−qapak, (5)

in agreement with Lancaster Eq (42.1).

One might wonder about the normal ordering. Why aren’t there terms of the
form, for example, g′

2V
∑

kpq a
†
k+qapa

†
p−qak? Consider this term and apply the

canonical commutation relations to the middle two factors in each summand
– namely apa

†
p−q = a†p−qap + δ(3)(q). We end up with (noting that H ′ refers

to the Hamiltonian whose second term above isn’t normal-ordered)

H ′ ≈
∑
p

p2

2m
a†pap +

g′

2V
∑
kpq

a†k+qa
†
p−qapak +

g′

2V
∑
kp

a†kak (6)

The last term is a double sum. The sum over k is simply the total number
operator and for a system with N particles, its value is N . So the last term

ends up as
∑

p

(
g′N
2V

)
. This is a constant and can be ignored (even though

it’s an infinite constant).

Note that the usual order of things, is first the derivation of the Hamilto-
nian in terms of the annihilation and creation operators, and then the field
description embodied in the action.
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2 The dispersion relation and why we care

Once we have the Hamiltonian, we need to find its eigenstates and eigen-
values. Consider a Hamiltonian with eigenstates |p〉 and energy-eigenvalues
E(p). If the energies are independent of the direction of p, we write E(p) and
this function is known as a dispersion relation.2 Here is an example of a dis-
persion relation which happens to correspond to Bogoliubov’s approximation
of our superfluid Hamiltonian.

E(p) =

√
p2

2m

(
p2

2m
+

2Ng

V

)
. (7)

In this figure, the minimum slope of the curve (also known as the critical
velocity) occurs at the origin and has the value

√
ng
m

.

For a short-range potential V(k)) which is more general than the delta-
function, we can get a more general dispersion curve, for example

2Clearly there is some ambiguity in this definition, since I’ve said nothing about how
one selects the variables used for identifying the energy eigenstates. Implicitly, these values
are momenta or even more specifically, they are eigenvalues of momentum operators. It
would be important to verify that those momentum operators implied in the dispersion
relation, have the properties required for the discussion of the Landau criterion.
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2.4. LANDAU CRITERION FOR SUPERFLOW 19

Figure 2.9: A spectrum ε(p) and the corresponding critical velocity for the superfluid.

shift of a frequency in a moving frame18.

So given Eq. 2.8 our question is whether in the lab frame, the energy to create
an excitation is ever negative. If so, excitations are created spontaniously and energy is
dissipated. So when does this happen? Obviously ε − v · p is minimized when v and p
are parallel. Thus we can get negative values of εlab only if

ε(p)

p
< v

Given a dispersion ε(p) (in the rest frame), there is thus a critical velocity

vcrit = min
p

ε(p)

p

(see figure 2.9). Below this critical velocity, there is no way to create a quasiparticle
while conserving energy and momentum. If the fluid flows at velocity greater than the
critical velocity, quasiparticles are spontaneously generated and energy is dissipated from
the superflow.

Note now that if one considers a BEC, the spectrum of excitations is simply p2/(2m)
i.e., just the spectrum of noninteracting particles. The critical velocity is then

vcrit;BEC = min
p

p2/(2m)

p
= 0 (!)

We thus conclude (as Landau realized intuitively!) that a noninteracting BEC does not
superflow!

When we add interacting between the bosons, the spectrum develops an acoustic
wave (we will see this in more detail later!). In that case we have a low energy spectrum

ε(p) = vsound p+ . . .

18This argument is strictly correct for situations where the dispersion is linear — i.e., we have sound
waves or phonons.

Landau proposed a criterion for superfluidity, based on the characteristics
of the dispersion relation (I’m now going to quote liberally from https://

www-thphys.physics.ox.ac.uk/people/SteveSimon/QCM2020/QuantumMatterMostRecent.

pdf). We imagine flowing the superfluid past a stationary wall at velocity v
as on the left of the figure below, and we would like to ask whether energy
can be dissipated.18 CHAPTER 2. INTRODUCTION TO SUPERFLUIDS

Figure 2.8: Left: Flowing a fluid past a wall. Right: In the fluid frame, the wall is moving.

excitations of particles out of the ground state wavefunction. In an interacting superfluid,
these are more complex collective excitations. We need only assume that such excitations
exist.

We now imagine flowing the superfluid past a stationary wall at velocity v as in the
right of Fig. 2.8, and we would like to ask whether energy can be dissipated. Another way
to ask this is to ask wehether quasiparticles can be excited.

In order to answer this, the argument entirely boils down to figuring out the energy
momentum relation in the rest frame of the superfluid and then asking whether energy
and momentum can be conserved in a process that creates a quasiparticle excitation.

Thus, let us switch to the fluid rest frame as in the right of Fig. 2.8. We know the
dispersion εfluid(p) = ε(p) of excitations in this (the fluid) frame, and we would like to
determine the dispersion relation in the lab frame. A classical Galilean transformation
gives us

εlab(p) = εfluid(p)− p · v (2.8)

Note that here the quantum number p describes the momentum of the quasiparticle in
the fluid frame.

To justify this Galilean transformation (Eq. 2.8) we should recall that in quantum
mechanics the phase of the wavefunction oscillates as

ψ ∼ e−iεt/~

So here we are claiming that a wavefunction for a particle with momentum p should
oscillate as

ψ(p) ∼ eip·x/~−iεt/~

If we transform into a moving frame we then have

ψ(p) → eip·(x+vt)/~−iεt/~

= eip·x/~−i(ε−p·v)t/~

so we rederive Eq. 2.8.

A more familiar way of understanding this transformation is to think about frequen-
cies ω = ε/~ instead of energies. We then recognize Eq. 2.8 as being the usual Doppler

Another way to ask this is to ask whether quasiparticles can be excited. I
believe that the complete argument goes like this: We want to know if a
fluid can move by a wall without friction (more precisely, “viscosity”). In
general, if the kinetic energy of fluid motion can be converted to heat energy
– which we can think of as internal energy or particle-randomized kinetic
energy (think of Brownian motion) – then the fluid will slow down. In other
words, if the kinetic energy of the fluid can decrease by conversion to internal
energy, then the fluid will slow down.

The argument is due to Landau and leads to a criterion known as Landau’s
criterion. Here I will follow Lancaster Example 42.5. A somewhat more
traditional explanation – and more detailed – is given in the appendix to
these notes.
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Consider the fluid to be an object of mass M , initially flowing with a velocity
v past a wall. The fluid has an initial energy E0. After exciting a quasi-
particle from its ground state, it can end up with a lower energy provided
that the extra energy is transferred to the wall (as required by conservation of
energy). Since the wall isn’t moving, the energy would have to be transferred
as heat – i.e., “the process would dissipate energy in the form of heat.” That’s
all perfectly OK. Can the fluid end up with a larger energy? By the same
kind of logic, this would require heat energy to be transferred from the wall
and that’s not OK.3

So the question becomes, “is the final fluid energy lower or higher than the
initial fluid energy?” Assume the quasi-particle is excited from 0 relative-
momentum (relative to the fluid motion) to a relative momentum p. Then
the fluid’s velocity must change to vf in order to conserve momentum, with

Mv = Mvf + p. (8)

The internal energy due to the quasi-particle excitation is E(p). Thus the

final energy is
Mv2f

2
+ E(p) ≈ Mv2

2
− v · p. We compare this to the initial

energy Mv2

2
and see that the final energy is less than the initial energy only

if E(p) − v · p < 0. In that case, the process can occur along with heat
dissipation (and therefore a reduction in fluid speed). Otherwise the process
can’t occur and fluid velocity doesn’t change.

Landau’s criterion for superfluid flow is |v| < vcrit where vcrit = min
p

ε(p)
p

. See

the dispersion graph above and note that vcrit 6= 0.

Suppose that the dispersion curve was the standard one for a massive nonrela-
tivistic particle εm = p2

2m
. Then εm(p)

p
= p

2m
. When we take the minimum over

all p, we obtain 0, therefore in that case, vcrit = 0 and there is no fluid flow.
We see that the Bogoliubov dispersion relation Eq. (7) has a low-momentum

limit of limp→0
εbog
p

=
√

Ng
mV . However, we can see from the dispersion curve

and the point on the curve that gives us vcrit, that the situation is a bit more
complicated. Lancaster refers to these quasiparticles as Bogolons.

3I’m a bit fuzzy on the details of the logic here. I think the correct argument is that
heat can’t flow from colder to hotter, and that this follows from thermodynamics. But
I’m not entirely sure that I can fill in all the dots. I like to relate these arguments back
to statistical mechanics, and I haven’t attempted to do that analysis – nor have I found a
reference that appears to approach things just the way I want.
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3 Wrestling the Hamiltonian into submission

Quartic terms are nasty. Bogoliubov proposed an approximation to Eq. (5),
which leads to a quadratic Hamiltonian

H =
∑
p6=0

(
p2

2m
+ ng

)
a†pap +

1

2

∑
p6=0

ng
(
a†pa

†
-p + apa-p

)
, (9)

where n = N
V is the number-density. This Hamiltonian can be diagonalized.

3.1 The Bogoliubov Hamiltonian

We now derive Eq. (9) starting from Eq. (5). Lancaster refers to this result
as Bogoliubov’s hunting license. Our derivation follows Lancaster 42.1, but
also draws on Landau and Lifshitz Volume 9 section 25 which, in my opinion,
is slightly clearer.

Since our experiments will be done at very low temperature, we can assume
that they will only probe very low energy states – that is, states whose energy
eigenvalues are close to the minimum. Recall that the lowest-energy state is
called the ground state. We represent that state as |Ω〉. Intuitively, since the
lowest-energy free particles have 0 momentum, we assume that the ground
state consists of N0 particles of momentum p = 0, where N0 is a very large
number (e.g. 1023). 4

We now wave our arms a bit, saying the magic words ”all this is approxi-
mately true in first-order perturbation theory” – in other words, pretend for a
moment that interactions are turned off. In that case, |Ω〉 (the symmetrized
N0-body ground state) has the ladder-operator property that

ap=0|Ω〉 =
√
N0|N0 − 1〉. (10)

Next, Bogoliubov says “the state |N0 − 1〉 has almost as many particles as

4Strictly speaking, in an interacting theory, the ladder operator a†p doesn’t precisely
increase the number of p-momentum particles by 1. Rather, it creates a new basis state
in Fock space. In first-order perturbation theory (the Born approximation), the energy
eigenstates are approximately the free many-body states so our ground-state is only ap-
proximately described as N0 0-momentum particles.
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the state |Ω〉 (e.g. compare 1023 − 1 to 1023), so set |N0 − 1〉 ≈ |Ω〉”, 5 thus

ap=0|Ω〉 ≈
√
N0|Ω〉. (11)

Similarly,
a†p=0|Ω〉 ≈

√
N0|Ω〉. (12)

Now recall that all states (in Fock space) can be generated by a sequence
of creation operations acting on the ground state, so a general state can be
written as

|s〉 =
∞∑
m=1

∞∑
n1=0,...,nm=0

(
a†pn1

)n1

...
(
a†pnm

)nm

|Ω〉. (13)

Furthermore, since we are dealing with an N -body system, the above expres-
sion is constrained so that

∑m
i=1 ni = N . If we act on this state with either

the operator ap=0 or a†p=0, then because of the commutation relations, that
operator will commute with all of the other creation operators that act on
the vacuum, resulting for example in

ap=0|s〉 = ap=0

( ∞∑
m=1

∞∑
n1=0,...,nm=0

(
a†pn1

)n1

...
(
a†pnm

)nm

|Ω〉
)

=

( ∞∑
m=1

∞∑
n1=0,...,nm=0

(
a†pn1

)n1

...
(
a†pnm

)nm

)
ap=0|Ω〉

=
√
N0

( ∞∑
m=1

∞∑
n1=0,...,nm=0

(
a†pn1

)n1

...
(
a†pnm

)nm

|Ω〉
)

=
√
N0|s〉.

(14)

Similarly,
a†p=0|s〉 =

√
N0|s〉. (15)

Since these equations hold for every state, we simplify by saying that

ap=0 = a†p=0 =
√
N0. (16)

What is the relationship between N and N0? 6 In general, because of the
constraint

∑m
i=1 ni = N , we know that when we operate on a state with the

5Frankly, other approximations would seem to me to be just as valid and would poten-
tially lead to other results.

6The following paragraph follows the standard argument both in Lancaster and also,
for example, in Landau and Lifshitz. However, approximations are being made for which
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number operator N̂ we’ll get N̂ |s〉 = N |s〉. We simplify this notation by
saying N̂ = N . Since the number operator N̂ is given by N̂ =

∑
p a
†
pap we

then obtain
N = N̂ =

∑
p

a†pap

= a†p=0ap=0 +
∑
p6=0

a†pap

≈ N0 +
∑
p6=0

a†pap.

(17)

Let’s return to Eq. (5).

H ≈
∑
p

p2

2m
a†pap +

g

2V
∑
kpq

a†k+qa
†
p−qapak. (18)

Our goal is to change the quartic term into a quadratic term, by using the
Bogoliubov hunting license. We will expand the interaction part (propor-
tional to g) of H in powers of N . The ladder operators, for p 6= 0 are of
order 1.

The leading term of order N2 comes from the quartic sum, when q+k =
p-q = p = k = 0. This contribution gives us g

2V a
†
0a
†
0a0a0 ≈ g

2VN
2
0 ≈

g
2VN

2−N g
V
∑

p6=0 a
†
pap where we have invoked Eq. (17).6 Notice that the con-

tribution from a†0a
†
0a0a0 involves both a constant (momentum-independent)

term of order N2 and a momentum-dependent term of order N . As usual
when considering the spectrum of the Hamiltonian, we drop the constant
term. We are then left with the sub-leading (order N) term −N g

V
∑

p6=0 a
†
pap.

In fact, we see that order N is actually the leading non-trivial order.

There are also sub-leading terms (order N) which come from quartic terms
where exactly two of the momenta are 0. For example, if p = k = 0,
then the two remaining momenta are k+q = q and p-q = -q, leading to
a contribution of N g

V a
†
qa
†
-q (plus a sub-sub-leading term of order N0 which

I haven’t seen a full justification – despite my conviction that such a justification has been
given in the literature. Here is my stab at a justification. I believe the key is to expand the

momentum-0 ladder operators in powers of 1/
√
N0. Write ap=0 =

√
N0

(
1 + δ√

N0
P + ...

)
where P is an operator of order 1. Then [ap=0, a

†
p=0] = 1, so |δ|2[P, P †] = N0, thus δ is

of order 1√
N0

. In our expansions, we only go out to order N0 and we also ignore terms

that are momentum-independent. If we do this systematically, we’ll discover that terms
of order δ can be ignored.
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we will ignore). There are five other possible combinations with exactly two
momenta. These are shown in Lancaster Eq. (42.2).

We might expect that if a quartic term had exactly three momentum that
are 0, then that term would be of order N

3
2 . However, it’s easy to see that

the momenta are constrained so that it’s impossible for exactly three to be
0. For example, suppose that p = k = k+q = 0. Then this implies that
q = 0 and therefore p-q = 0. So all 4 momenta are 0.

What about a quartic term where only one momentum is 0 or where no
momenta are 0? In both those cases, the order of N is less than 1 (the
leading non-trivial order) so can be dropped. 7

Putting all of the terms together, we finally end up with Eq. (9)

H =
∑
p6=0

(
p2

2m
+ ng

)
a†pap +

1

2

∑
p6=0

ng
(
a†pa

†
-p + apa-p

)
,

where n = N
V is the number-density. Notice that the kinetic term is of order

0 in N . However, it’s also of order 0 in g and so, in principle could be as
large as the interaction terms which are proportional to Ng (said differently,
our perturbation expansion is done separately for the two parameters g and
N).

3.2 Diagonalizing the Hamiltonian

The idea is to redefine the annihilation and creation operators so that

� The new operators bp also obey the ladder commutator rules

� Using the new operators, the Hamiltonian should be in the form H =∑
pE(p)b†pbp + constant

7Lancaster, as well as some other references I’ve seen, claim that the the case with only
one momentum is excluded because it gives a non-zero expectation value. I’m skeptical of
that statement and besides, I’m not sure which expectation value is being considered or
why it’s relevant to the spectrum. Notably, Landau and Lifshitz do not make this claim.
Since we don’t actually care about terms of N -order less than 1, none of this matters
anyway.
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(Note that Lancaster uses the notation α instead of b, but I find that hard
to read.) By redefining the ladder operators, we are effectively changing the
basis states and therefore what we call the “particle states”.

Two common terms used are

� quasiparticles (sometimes described as “excitations”), meaning the (fam-
ilies of) states created by applying the new creation operators b†p.

� antiparticles meaning the (families of) states created by applying the
new annihilation operators b−p. Since all momenta are permitted (both
positive and negative coordinates), the term “antiparticle” should re-
ally be “antiparticle with momentum p”.

Using this terminology, we’ll see that the quasiparticles are linear combina-
tions of particles and antiparticles of momentum p.

The redefinition of the ladder operators is accomplished by the linear trans-
formation (see Lancaster Eq. (42.7))(

ap
a†−p

)
=

(
up −vp
−vp up

)(
bp
b†−p

)
. (19)

As Lancaster demonstrates, we can assure that the new operators obey the
ladder commutation relations, provided that

u2
p − v2

p = 1, up = up∗, vp = vp∗ (20)

Rewrite Eq. (9) as

H =
∑
p6=0

(
a†p a−p

)( εp
1
2
ng

1
2
ng 0

)(
ap
a†−p

)
=
∑
p6=0

(
b†p b−p

)( up −vp
−vp up

)(
εp

1
2
ng

1
2
ng 0

)(
up −vp
−vp up

)(
bp
b†−p

) (21)

where εp = p2

2m
+ ng. The matrix multiplication can be done and we have

H =
∑
p6=0

(
b†p b−p

)
H
(
bp
b†−p

)
(22)
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where

H =
1

2m

(
(p2 + 2gmn)u2

p − 2gmnupvp − (p2 + 2gmn)upvp + gmn
(
u2
p + v2

p

)
− (p2 + 2gmn)upvp + gmn

(
u2
p + v2

p

)
(p2 + 2gmn) v2

p − 2gmnupvp

)
.

(23)

We can diagonalize H by solving for up and vp, subject to the constraints
of Eq. (20), so that the off-diagonal elements are 0. (See Lancaster p. 373).
We obtain solutions

up =
1

2

(
E(p)

εp
+

εp
E(p)

)
vp =

1

2

(
−E(p)

εp
+

εp
E(p)

) (24)

where

E(p) =

√
p2

2m

(
p2

2m
+ 2ng

)
. (25)

This gives us

H =
E(p)

4

(
3 1
1 3

)
. (26)

We perform the matrix multiplications of Eq. (22) and obtain

H =
∑
p6=0

E(p)

4

(
3b†pbp + b−pb

†
−p

)
. (27)

We note that in the second sum, we can change the summand from p to −p
and then we can use the ladder operator identity bpb

†
p = b†pbp + 1 to finally

obtain

H =
∑
p6=0

E(p)b†pbp +
∑
p6=0

E(p)

4
. (28)

The second term is a (infinite) constant so we can ignore it.8 We now have
the Hamiltonian in the diagonal form with eigenvalues obeying the disper-

sion relation E(p) =

√
p2

2m

(
p2

2m
+ 2ng

)
, which is the same as the dispersion

relation Eq. (7), which we used to show that the Bogoliubov theory describes
a superfluid.

8Lancaster doesn’t show this constant.
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4 Summary

Here is the sequence of steps for deriving the non-viscosity of super-cooled
fluids with low fluid velocities.

� We consider a system consisting of N indistinguishable bosons.

� We hypothesize a many-body quantum Hamiltonian in which the dom-
inant interactions are two-body short-range interactions.

� Because of the indistinguishability of particles, we can describe the
Hilbert space by using the occupation-number representation (basis
states can be described by stating how many particles are in each one-
particle state). Two-body interaction operators look like sums of quar-
tic terms that look like a†p1

a†p2
ap3

ap4
.

� The short-range interactions are approximated by a delta-function. If
this were a classical system, it would describe pointwise collisions.

� The resulting Hamiltonian looks like

H ≈
∑
p

p2

2m
a†pap +

g

2V
∑
kpq

a†k+qa
†
p−qapak.

� We will want to diagonalize this Hamiltonian, but the quartic terms
make that difficult. Bogoliubov used an approximation – valid when
the temperature of the system is close to 0 and therefore most particles
are in the ground state (of 0 energy) that allows us to approximate the
above Hamiltonian with a quadratic (in ladder operators) form which
we will be able to diagonalize. Bogoliubov’s trick was to notice that

ap=0|s〉 ≈
√
N0|s〉.

for all states (and therefore that we can write ap=0 = N0. By applying
this trick, and then expanding the interaction term in powers of N , he
ended up with

H =
∑
p6=0

(
p2

2m
+ ng

)
a†pap +

1

2

∑
p 6=0

ng
(
a†pa

†
-p + apa-p

)
,
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� If you introduce the operator bp defined by(
ap
a†−p

)
=

(
up −vp
−vp up

)(
bp
b†−p

)
,

where

up =
1

2

(
E(p)

εp
+

εp
E(p)

)
vp =

1

2

(
−E(p)

εp
+

εp
E(p)

)
,

with εp = p2

2m
+ ng, then we can show that

H =
∑
p6=0

E(p)b†pbp + constant,

where

E(p) =

√
p2

2m

(
p2

2m
+ 2ng

)
.

� This relation between momentum and energy is known as the dispersion
relation and is illustrated in the graph2.4. LANDAU CRITERION FOR SUPERFLOW 19

Figure 2.9: A spectrum ε(p) and the corresponding critical velocity for the superfluid.

shift of a frequency in a moving frame18.

So given Eq. 2.8 our question is whether in the lab frame, the energy to create
an excitation is ever negative. If so, excitations are created spontaniously and energy is
dissipated. So when does this happen? Obviously ε − v · p is minimized when v and p
are parallel. Thus we can get negative values of εlab only if

ε(p)

p
< v

Given a dispersion ε(p) (in the rest frame), there is thus a critical velocity

vcrit = min
p

ε(p)

p

(see figure 2.9). Below this critical velocity, there is no way to create a quasiparticle
while conserving energy and momentum. If the fluid flows at velocity greater than the
critical velocity, quasiparticles are spontaneously generated and energy is dissipated from
the superflow.

Note now that if one considers a BEC, the spectrum of excitations is simply p2/(2m)
i.e., just the spectrum of noninteracting particles. The critical velocity is then

vcrit;BEC = min
p

p2/(2m)

p
= 0 (!)

We thus conclude (as Landau realized intuitively!) that a noninteracting BEC does not
superflow!

When we add interacting between the bosons, the spectrum develops an acoustic
wave (we will see this in more detail later!). In that case we have a low energy spectrum

ε(p) = vsound p+ . . .

18This argument is strictly correct for situations where the dispersion is linear — i.e., we have sound
waves or phonons.

In this figure, we have drawn a line from the origin through the local
minimum. The slope of that line is known as the critical velocity and
is found mathematically as vcrit = min

p

E(p)
p

.

� Landau argued as follows: There is friction between the fluid and the
walls only if heat is transferred to the wall by the moving fluid. That
means there are some molecules in the moving fluid that have state-
transitions where their energy is reduced. We examine state-transitions
in the fluid rest-frame. These transitions obey the dispersion rela-
tion that connects rest-frame momentum p to energy E(p). Then,

13



to obtain the dispersion relation relative to wall-frame momenta, we
apply a Galilean transformation. If that transformed dispersion rela-
tion value, E(p)− p · v is negative, then the wall can dissipate energy
(i.e., heat is transferred to the wall) which implies friction. Other-
wise there is no friction which happens if the fluid velocity v satisfies
v < vcrit = min

p

E(p)
p

. That’s the Landau criterion.

A Other (more traditional) derivation of the

Landau criterion

This follows several treatments of the subject, but the one which I think is
clearest is Fukuda et al. I would have preferred a treatment which explicitly
discusses the thermodynamics, but I haven’t found one to my satisfaction.

Since the temperature is almost 0, most quasiparticles (in the rest frame of
the fluid) are in the ground state. Let us consider the possibility of exciting
(in the fluid frame) one quasiparticle to a state with momentum p and energy
εfluid(p). In the lab frame we obtain the energy of that quasiparticle by a
Galilean transformation

εlab(p) = εfluid(p)− p · v (29)

I’ll shortly give an argument for this. In the meantime, notice that if we
weren’t taking the walls into consideration, the fluid velocity would have
no physical significance. Our analysis will therefore have to account for the
possibility of energy transfer between the wall and the fluid.

Since the quasiparticle excitation changes the total system (including fluid
and wall) energy by εlab(p), energy conservation requires that the rest of the
system must experience a change of energy ∆ = −εlab(p). The only source for
that energy is the wall – or more precisely, the interaction between the wall
and the fluid. 9 In the lab frame, the wall is at rest so it cannot contribute
mechanical energy. Only heat energy can change. If ε(p) is negative, then
the changed heat energy ∆ must be positive. 10 (We refer to that process

9You might object that there are other quasiparticles that could contribute that energy
but if so, they would have to contribute via the same kind of excitations that we are con-
sidering. So in general, we can add up all the excitations in the fluid. At low temperature,
there aren’t likely to be many.

10I think a bit more discussion is required. As far as I can tell, many papers have
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as “dissipation of energy”). In thermodynamics (or statistical mechanics),
system energy is conserved so if heat energy increases, then system kinetic
energy decreases – hence velocity decreases. Thus if ε(p) can be negative,
then the fluid slows down – i.e., it has viscosity.

On the other hand, if ε(p) is positive, the wall is unable to impart a com-
pensating negative energy. In that case, the excitation can’t occur and as a
result, the fluid doesn’t slow down.

If |v| < ε(p)
p

, then it is easy to show that εlab is always positive, in which
case the fluid does not slow down. Landau’s criterion for superfluid flow is
|v| < vcrit where vcrit = min

p

ε(p)
p

. See the dispersion graph above and note

that vcrit 6= 0.

Caveat emptor. The Landau criterion, as well as the remainder of Landau’s
theory of superfluidity and Bogoliubov’s analysis (coming up soon), involves
many approximations and assumptions. Some of these have been discovered
to be highly consequential (for example, see Feynman’s work c. 1955). Others
not so much. Despite that, the Landau and Bogoliubov theories are beautiful
explanations of rather mysterious phenomena, and have proven themselves
to have great predictive power.

A.1 A loose end: Galilean transformation

Simon has a crisp explanation for the Galilean transformation given in Eq.
(29). He asks us to recall that if a quantum state is an eigenvector of both
energy and momentum, then its space and time dependence looks like

Ψ(t,x) ∝ ei(p·x−Et). (30)

In a moving frame, this becomes

Ψ′(t,x) ∝ ei(p·(x+vt)−Et)

= ei(p·x+(E−p·v)t)

= ei(p·x+E′)t,

(31)

where E ′ = E − p · v in agreement with Eq. (29).

been written exploring the nuances of this analysis, but what I refer to as heat energy
is a collection of molecular excitations, and for “ordinary materials” these have positive
energy. In ordinary English, this amounts to saying that the fluid heats up the wall through
friction.
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