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1 Introduction

We now turn to the field theoretic treatment of superfluids, where our fun-
damental quantities are fields rather than ladder operators. An extremely
thorough online book on this subject, is Superfluid States of Matter, by
Svistunov, Babaev and Prokof’ev.

From Lancaster Chapter 4 and my previous notes, we had the following
approximate action for a non-relativistic bosonic many-body field theory with
only very short-range 2-body interactions.

S(φ) =

�
d3x

[
iφ†∂0φ−

1

2m
∇φ† ·∇φ

]
(x)−g

2

�
d3xd3yφ†(x)φ†(y)δ(3)(x−y)φ(y)φ(x).

(1)
This theory was taken as a model for superfluids.

From this, we can derive the Hamiltonian by following the usual transforma-
tion from Lagrangian to Hamiltonian.1

1The second line below follows from the first only if we are cavalier about the ordering
of operators. The canonical commutation relations imply that φ†(x) doesn’t commute
with φ(x) so an ordering has to be chosen. The usual ordering is normal-ordering. If we
change the ordering, that would introduce a term quadratic in φ. However, we’ll later
also introduce another term quadratic in φ with a proportionality constant µ which is
ultimately chosen by requiring the measured value of N . If we change the ordering of the
factors in the quartic term, that will have the effect of redefining µ. This kind of procedure
is known as renormalization and won’t change the conclusions about superfluidity that we
discuss later.
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H =
1

2m

�
d3x∇φ†(x) ·∇φ(x) +

g

2

�
d3xd3yφ†(x)φ†(y)φ(y)φ(x)δ(3)(x− y)

=
1

2m

�
d3x

(
1

2m
∇φ†(x) ·∇φ(x) +

g

2

(
φ†(x)φ(x)

)2)
(2)

We put the system in a box of volume V , so that the momenta become
discrete and then cast this expression into a form using annihilation and
creation operators, using the mode expansion

φ†(x) =
1√
V

∑
p

a†pe
−ip·x. (3)

This gives us

H ≈
∑
p

p2

2m
a†pap +

g

2V
∑
kpq

a†k+qa
†
p−qapak, (4)

in agreement with Lancaster Eq (42.1). We started with this expression,
used the Bogoliubov large-N (“hunting license”) approximation and then
went from there to an explanation for superfluidity. Now we want to see
whether we can derive superfluidity directly using the action Eq. (1) and in
the process, avoiding the Bogoliubov “hunting license” approximation (based
on large N).

2 Obtaining the energy dispersion from field

theory – broken symmetry

2.1 Statistical mechanics and the chemical potential

Previously, we proceeded by obtaining an energy dispersion relation and then
using the Landau criterion to show that at small fluid velocities, the fluid has
no viscosity. Our derivation relied on the fact that at low temperature, the
N -molecule system mostly finds itself in the ground state. We might have
thought that the ground state is essentially trivial, but a close examination of
the Hamiltonian reveals that the interaction term acting on the ground state
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is of order N2 hence the ground state is by no means a 0-energy state. We
can then expand in inverse-powers of N to find an approximate dispersion
relation that leads to the Landau criterion.

If we wished to proceed directly from the action (Eq. 1), we would immedi-
ately notice that this expression makes no direct reference either to N , the
number of molecules, nor to the temperature. In other words, there’s nothing
in the Lagrangian or Hamiltonian that would lead us to conclude anything
about the importance of the ground state at low temperature. Why not?

What’s missing is the inclusion of statistical mechanics. Recall that any
systematic study of many-body systems, must take into account the presence
of some kind of “environment” – for example a container. We account for the
environment with certain parameters that have been found to characterize
constraints that are pertinent to the system of interest (in this case, the fluid).
Those parameters often play the role of Lagrange multipliers whose values
determine quantities like the average energy of the system or the average
number of molecules in the system.

Following the usual arguments of statistical mechanics, if a system is in
thermal equilibrium with a heat reservoir, and that system has a number N
of particles, the probability of finding the system in a state with energy E
can be derived to be

P = Ce−β(E−µN) (5)

where we have introduced the Lagrange multiplier βµ. µ is known as the
chemical potential and for a specific system can be inferred from a measure-
ment of N . Recall that β = 1

kT
so that the probability is high when the

temperature is low . Furthermore, lower-energy states are more likely than
higher-energy states.

Now let’s apply this to our fluid system with Hamiltonian given by Eq. (2).
Note that in the probability equation Eq. (5), the quantity µN can be written
as µ

∑
a†kak → µ

�
d3xφ†(x)φ(x). So if the eigenstates of the Hamiltonian H

are denoted by E, then E − µN are the eigenstates of H − µ
�
d3xφ†(x)φ(x)

up to an arbitrary constant.

H − µ
�
d3xφ†(x)φ(x) =

�
d3x

(
1

2m
∇φ†(x) ·∇φ(x) +

g

2

(
φ†(x)φ(x)

)2 − µφ†(x)φ(x)

)
=

�
d3x

(
1

2m
∇φ†(x) ·∇φ(x) +

g

2

(
µ

g
− φ†(x)φ(x)

)2

− µ2

2g

)
.

(6)
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The last term in the sum is a constant and can be dropped, leaving us with
the Hamiltonian, H ′ whose eigenstates are of interest,

H ′ =

�
d3x

(
1

2m
∇φ†(x) ·∇φ(x) +

g

2

(
µ

g
− φ†(x)φ(x)

)2
)
. (7)

2.2 A ground state of H ′

In Eq. (7) each of the two terms of H ′ are positive, so the “minimum value”
of H ′ occurs when φ is a constant where φ†φ = µ

g
.

The phrase “minimum value” is in quotation marks, because H ′ is an oper-
ator and not a real-valued function. If we were looking at a classical theory,
it would indeed be true that we could find the minimum energy state by an
appropriate choice of φ as described above. But what looking for in quan-
tum mechanics, is the ground state (state with the smallest eigenvalue) of
the operator H ′. We can invoke a theorem about self-adjoint operators.

Theorem: For any self-adjoint operator A, and for any normalized state |ψ〉
which minimizes 〈ψ|A|ψ〉, |ψ〉 is an eigenstate of A whose eigenvalue is a
minimum amongst eigenvalues of A.

We now introduce a connection between the classical and quantum theory.
Let the normalized state |φ〉 denote a state with the property φ̂(x)|φ〉 =
φ(x)|φ〉. I’ve reintroduced the “hat” or “caret” mark to indicate an operator
as opposed to a complex function. Previously, when writing field operators,
I’ve dropped the “hat” for convenience but right now, we need to distinguish
between operators and functions. So the state |φ〉 has the property that when
you act on it with the field operator φ̂(x) it has the value φ(x) times itself. In
other words, |φ〉 is an eigenstate of the operator φ̂(x) with eigenvalue φ(x).
2 We call such a state a “coherent state”.

It remains to be seen whether there is such a state in the Hilbert space.
Let us assume so for now. Then 〈φ|φ̂†(x) = φ∗(x)〈φ|. As usual, let the
Hamltonian be normal-ordered, so that the field operators φ̂(x) are to the
right of the field operators φ̂†(x). Evaluate 〈φ|H ′|φ〉 by applying φ̂(x) to |φ〉
on the right and φ̂†(x) to 〈φ| on the left. Then (from Eq. (7), but explicitly

2Perhaps things would be clearer if we used entirely different notation for the field
operator and the state. So for example, we could say the field operator was F(x) and that
a particular state φ〉 was defined by the property that F(x)|φ〉 = φ(x)|φ〉.
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including the “hat” for the field operators)

〈φ|H ′|φ〉 = 〈φ|
�
d3x

(
1

2m
∇φ̂†(x) ·∇φ̂(x) +

g

2

(
µ

g
− φ̂∗(x)φ̂(x)

)2
)
|φ〉

=

�
d3x

(
1

2m
∇φ∗(x) ·∇φ(x) +

g

2

(
µ

g
− φ∗(x)φ(x)

)2
)
〈φ|φ〉

=

�
d3x

(
1

2m
∇φ∗(x) ·∇φ(x) +

g

2

(
µ

g
− φ∗(x)φ(x)

)2
)
,

(8)
where the second line follows from the first noting that in the second line,
the fields are complex functions, and the third line follows from the second
noting that the coherent state is normalized.

Now choose φ(x) =
√

µ
g
eiθ. This is a constant, so the first term (involving

gradients) is 0, and by construction, the second term is 0. Therefore the

state |φ(x) =
√

µ
g
eiθ〉 has the property 〈φ|H ′|φ〉 = 0. Since H ′ is manifestly

non-negative, the state |φ〉 minimizes 〈φ|H ′|φ〉 and by the theorem quoted
above, |φ〉 must be a ground state of H ′.

This more or less completes the connection between the classical and quan-

tum theories. In the classical theory, we saw the field satisfying |φ(x)| =
√

µ
g
,

was a minimum of the classical H ′. In the quantum theory we saw that the

coherent state |φ(x) =
√

µ
g
eiθ〉 is a ground state of the quantum operator H ′.

3

Finally, we note that for any coherent ground state with phase θ, we have
the expectation value of the number density operator φ̂†(x)φ̂(x)

〈φ|φ̂†(x)φ̂(x)|φ〉 =
µ

g
. (9)

We therefore set n = µ/g as the ground-state number density, following
Lancaster in section 42.3. In our treatment of all this, we’ve taken the theory
in an infinite volume. However, that’s incompatible with our thermodynamic

3Our argument hasn’t precluded the possibility that there could be a non-coherent state
with the same energy as the ground state. I don’t know whether such a state is possible or
what it would mean if it were, but I’ll ignore this possibility. In various treatments on the
subject, I haven’t seen this discussed. However, the general theory has many complicated
threads that I haven’t explored.
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assumption of a fluid flowing through a finite volume bounded by walls.
Nevertheless, for sufficiently large volumes we can add an external potential
which is 0 inside the volume and infinite outside the volume, and our results
will approximate those above. 4

For a system with an experimentally expected value of N0 particles, the
chemical potential µ can be chosen to arrange that. Now we can ask what
the variance is.

Var(N) = 〈φ|N̂2|φ〉 − 〈φ|N̂ |φ〉2

= 〈φ|
�
d3xd3yφ̂(x)†φ̂(x)φ̂(y)†φ̂(y)|φ〉 − 〈φ|

�
d3xφ̂(x)†φ̂(x)|φ〉2

= 〈φ|
�
d3xd3yφ̂(x)†φ̂(y)†φ̂(x)φ̂(y)|φ〉+ 〈φ|

�
d3xφ̂(x)†φ̂(x)|φ〉

− 〈φ|
�
d3xφ̂(x)†φ̂(x)|φ〉2

=

�
d3xd3y〈φ|φ̂(x)†φ̂(y)†φ̂(x)φ̂(y)|φ〉+N0 −N2

0

=

(�
d3x

(
µ

g

))2

+N0 −N2
0

= N2
0 +N0 −N2

0

= N0.
(10)

The third equality follows from the second by employing the canonical com-
mutation relation [φ̂(x), φ̂†(y)] = δ(3)(x−y), the fourth equality follows from
acting on the left state with φ† and on the right with φ, and the fifth equality
follows from the ground-state condition.

So although the ground state has N particles, there is uncertainty in that
number with a dispersion of

√
N . This intuitively corresponds to Bogoli-

ubov’s assumption, where he used ap=0|Ω〉 ≈
√
N |Ω〉.5

4The effect will be to integrate the Hamiltonian density within the volume V. In that
case, we find that the expectation value of the total number of particles is N = (µV) /g.

5I haven’t found any reference which has exactly the derivations or conclusions in my
notes. There is a fair amount written about the uncertainty relation between phase angle
and number operators, and I think my conclusions are somewhat similar. So ... caveat
emptor.
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2.3 Perturbations from the Ground State – breaking
the U(1) symmetry

Recall our field Hamiltonian

H ′ =

�
d3x

(
1

2m
∇φ†(x) ·∇φ(x) +

g

2

(
µ

g
− φ†(x)φ(x)

)2
)
. (11)

This Hamiltonian is invariant under the U(1) transformation

φ→ φeiθ

φ∗ → φ∗e−iθ
(12)

.

Now rewrite the field as φ = φ0 + φ1 where φ0 is a ground state. In general,

φ0 =
√

µ
g
eiθ, where θ distinguishes one ground state from another. Let us

pick θ = 0 so that φ0 =
√

µ
g
. Expand the Hamiltonian to leading orders in

φ1 (or equivalenty, leading orders in
√
g). Then we get

H ′ ≈
�
d3x

(
1

2m
∇φ†1(x) ·∇φ1(x) + µ

�
d3x′φ∗1(x)φ1(x) +

µ

2

�
d3x

(
φ2
1(x) + φ∗21 (x)

))
.

(13)
This Hamiltonian is not symmetric under a transformation φ1 → φ1e

iθ etc.
The reason is that we chose one vacuum amongst all possible vacuums re-
lated by U(1) transformations. This choice of vacuum breaks the original
symmetry. The physics we obtain by expanding around one vacuum will be
identical to the physics we would obtain by expanding around another, but
apart from that, we have “broken the symmetry”.

This form of the Hamiltonian in terms of the field φ1 is quadratic, and can
therefore be diagonalized by standard methods of field theory [essentially,
rewrite the Hamiltonian in the schematic form φ∗1iQ

ijφ1j and then diagonalize
Q. We can accomplish this most directly in momentum space (take the
Fourier transforms of the fields).

Lo and behold, we end up with the Bogoliubov dispersion relation

E(p) =

√
p2

2m

(
p2

2m
+

2Ng

V

)
. (14)
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3 Switching to the Lagrangian

I’m not going to get too philosophical about the definition of a particle. How-
ever, in a field theory, fields can be redefined and their corresponding mode
expansions may describe ladder operators that annihilate or create states
which differ from the original N -particle states. Some of these definitional
ambiguities are due to choices of how to split a Hamiltonian into a free part
and an interacting part.

For the time being, I’m going to follow a procedure based on the Lagrangian
formulation of field theory. Here I’m assuming that H ′ describes the same
theory as a Lagrangian L obtained from H ′ by the standard Legendre trans-
formation.6 I’ll say more about that assumption in the next subsection.

In the meantime, we can see that the resulting theory has the (non-relativistic)
Lagrangian (once again I’ll revert to notation without “hats” on the opera-
tors)

L = iφ†(x)∂0φ(x)− 1

2m
∇φ†(x) ·∇φ(x)− g

2

(
µ

g
− φ†(x)φ(x)

)2

, (15)

where I’ve combined results from Eqs. (1) and (7). This is the same equation
as Lancaster Eq. 42.23 with n = µ/g. We’ll use this description of the theory
later.

3.0.1 From partition function to functional integral

There is a deep mathematical relationship between the fundamental dynam-
ics of a system, and the thermodynamic properties of that system in equilib-
rium with an external environment. The thermodynamic properties can all
be derived from derivatives (with respect to temperature, chemical potential
or volume) of the grand canonical partition function, Z:

Z is a fundamental concept in statistical mechanics, particularly
in the context of statistical thermodynamics. It’s a mathemat-

6In particular, the Lagrangian inherits the contribution from the chemical potential
and thus includes the effect of thermal exchanges between the system and its environment.
Ultimately, this becomes the mechanism whereby the number of particles is constrained
and also which leads to a low-temperature theory dominated by a ground state populated
mostly by 0-momentum particles.
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ical tool used to describe the statistical properties of a system
in equilibrium with a reservoir, allowing for exchange of both
energy and particles with the reservoir. This reservoir usually
represents a much larger system with which the main system can
exchange particles (like a gas exchanging molecules with a larger
gas reservoir at a constant chemical potential) and energy (like
a system in thermal contact with a larger heat bath at constant
temperature).

Z is defined as
Z =

∑
states s

e−β(Es−µNs) (16)

As before, Es is the energy of a state, where the set of states and energies
define a Fock space where the states are generated by the eigenstates s of
a Hamiltonian, whose eigenvalues are Es. µ is the chemical potential and
Ns is the number of particles in state s and is the eigenvalue of the number
operator N acting on that state.

A somewhat similar-looking object, denoted Z and which we’ll call the “field
partition function”, completely characterizes the (non-equilibrium) dynamics
of the quantum system. All properties of interest can be derived from various
functional derivatives of that partition function. Z is defined as

Z =

� ∏
DφDφ∗eiS[φ,φ∗] (17)

where the functional integral is over all values of the field φ and the action
S is �

dtd3xL(φ, φ∗)(t,x) (18)

for a Lagrangian L.

As an interesting and important observation, we can (formally) analyti-
cally continue t to −iτ where τ is real. This is known as a Wick rota-
tion, and the analytically continued spacetime is called Euclidean (instead of
Minkowskian) spacetime.

I found a set of lectures by Gustavo Burdman (see especially Lecture 5 Lec-
ture 6) which demonstrates how to transform the grand canonical partition
function into a field partition function. In particular, he demonstrates the
following:

Z =

� ∏
DφDφ∗e−SE [φ,φ∗] (19)
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where

SE[φ, φ∗] =

� β

0

dτd3x (φ∗∂τφ+H(φ∗, φ)− µφ∗φ) (20)

with the periodic boundary conditions φ(0) = φ(β) and φ∗(0) = φ∗(0).78

SE is the analytic continuation to Euclidean space of the action S corre-
sponding to the Lagrangian of Eq. (15), so we’ve more or less shown that
the grand canonical partition function can be written as the field partition
function – subject to the periodic boundary conditions in the Euclidean time
variable. When β →∞, i.e., when the temperature goes to 0, the two parti-
tion functions are the same. Of course, they are used differently for dynamics
than for equilibrium thermodynamics (at 0 temperature) but presumably one
can employ this mathematical equivalence to gain new insights and compute
interesting relationships.

A Principles of Statistical Mechanics

I’ve concluded that much of my confusion over Landau’s criterion and, more
generally, the formulation of superfluidity, has to do with my attempts to
shortcut what we need to understand about statistical mechanics. In this
section, I’ll attempt to be a bit more thorough although I don’t guarantee
that I’ll eliminate either my confusion or yours’. There’s lots I’ve forgotten
about statistical mechanics and thermodynamics, and some of that remains
buried.

Some of this has to do with terminology and my use of it.

� Internal Energy: The following is from Wikipedia:

The internal energy of a thermodynamic system is the
energy contained within it, measured as the quantity of en-
ergy necessary to bring the system from its standard internal
state to its present internal state of interest, accounting for

7If we are serious about treating φ∗ as the complex conjugate of φ, then it’s not neces-
sary to separately show both φ and its conjugate in the various equations above. Under
some circumstances, we think of these two objects as separate fields, only later related
through conjugation. However, I can’t think of any reason to do that in this context.

8I’ve made a few minor modifications to Burdman’s equations. In particular, he appears
to have dropped the spacial dependence of the fields so I’ve put those back in.
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the gains and losses of energy due to changes in its internal
state, including such quantities as magnetization.It excludes
the kinetic energy of motion of the system as a whole and
the potential energy of position of the system as a whole,
with respect to its surroundings and external force fields. It
includes the thermal energy, i.e., the constituent particles’ ki-
netic energies of motion relative to the motion of the system
as a whole. The internal energy of an isolated system cannot
change, as expressed in the law of conservation of energy, a
foundation of the first law of thermodynamics.

The internal energy cannot be measured absolutely. Ther-
modynamics concerns changes in the internal energy, not its
absolute value. The processes that change the internal en-
ergy are transfers, into or out of the system, of matter, or of
energy, as heat, or by thermodynamic work. These processes
are measured by changes in the system’s properties, such as
temperature, entropy, volume, electric polarization, and mo-
lar constitution. The internal energy depends only on the
internal state of the system and not on the particular choice
from many possible processes by which energy may pass into
or out of the system. It is a state variable, a thermodynamic
potential, and an extensive property.

� The setup for statistical mechanics is described thoroughly and clearly
in Reif’s text Fundamentals of Statistical and Thermal Physics. For
example, consider a total isolated system partitioned into 2 components
A and B. Let’s also imagine that the system Hamiltonian H can be
written as

H = HA +HB +Hint, (21)

where HA is the Hamiltonian for system A, HB is the Hamiltonian for
system B and Hint is the extra term of interaction and is small relative
to the Hamiltonians of the two subsystems.

Define E to be the energy of subsystem A, and define Ē to be the mean
energy amongst a collection (an ensemble) of systems whose macro-
paramaters are all identical to those of A. We call Ē the textitinternal
energy of A. Now we write

∆Ē = W +Q (22)

where ∆Ē is the change of internal energy, W is the change in inter-
nal energy owing to a change in the external parameters (i.e., due to
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macroscopic work on A) and Q is called the heat absorbed by A. A
similar equation can be written for system B, where by conservation
of energy, its internal energy changes by the negative of the change of
A’s internal energy.

� Continuing in the footsteps of Reif, we now relate the above quantities
to the Hamiltonian components. HA is taken to be the Hamiltonian of
system A prior to interaction and H ′A is taken to be the Hamiltonian
after interaction. Similarly for HB. We are picturing a process which
starts and stops – and that both work and heat are exchanged only
during the process. Sometimes the process is instigated by some pur-
poseful activity, usually a change of external parameters such as the
motion of a piston. Other times the process is instigated as a result of
the fact that the two systems A and B are at different temperatures
and therefore not in thermal equilibrium. The interaction Hamiltonian
mediates the process.

Reif asserts (reasonably, I think) that mechanical work W on system A
changes the energy eigenvalues of HA (so H ′A has different energy levels
than HA) but that heat absorption Q doesn’t change the energy levels
of HA. In general, the interaction process will cause state transitions so
that after the interaction, A′ will have a different population of states
than A and may even have different states (or different energy levels).
In a statistical ensemble representing A and A′, the mean population
of states will thus change.

Of particular importance to the superfluid discussion, is the system
consisting of the fluid which we’ll call A and the wall which we’ll call
B. In the wall’s frame of reference, the wall stays fixed and motionless
regardless of what the fluid does, so there are no “external” parameters
that change. The internal energy of the wall can only change by heat
absorption and thus by re-population of the original states.

� Now I’m going to stretch with an explanation that sounds right, but
might be too simplistic to be trustworthy. Suppose that the fluid is
at very low temperature and thus, in its rest frame, has most of its
quasiparticles occupying its ground state with p = 0. We ask the
question “is it likely that a transition will occur where one of those
ground-state quasiparticles will be excited to another state. All states
are indexed by a momentum p and have a corresponding energy of
E(p). Suppose that in the wall’s reference frame, the transition is
positive (i.e., the change of fluid internal energy in the fluid is positive).
This would imply that the change of energy in the wall is negative.
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Is that impossible? No. At least, I don’t think so. However, I think
it turns out to be highly improbable. There is a quantitative analysis
in Reif that I think is applicable. The key section is 15.2 and discusses
what happens when a system (e.g. the fluid) is in contact with a heat
reservoir (e.g. the wall), even when the two are possibly not in thermal
equilibrium. First note that this is precisely the situation of interest to
us: we want to show that

– above the critical velocity, the moving fluid and the wall remain
in equilibrium – that is, their energies don’t change,

– below the critical velocity, the moving fluid slows down and thus
isn’t in equilibrium until it stops moving.

The Reif analysis boils down to the equation

Wrs

Wsr

= e−β(Er−Es) (23)

where, for our fluid example, r and s are two states of the fluid with
energies Er and Es respectively, and Wab is the transition probability
from state a to state b. Consider the wall’s frame of reference. The
fluid’s energy states are indexed by the quasiparticle momentum p in
the fluid’s rest frame. We have been looking at a transition, in
the fluid rest frame, from the fluid’s ground state p = 0 to a state
with momentum p 6= 0 (more precisely, we have been considering a
transition from where the occupation number of the p state goes from
0 to 1).In the wall frame, the state energies change by E(p)− v · p, so
we have

W0,p

Wp,0

= e−β(E(p)−v·p). (24)

Suppose E(p)−v·p > 0. Then the RHS above is extremely small when
β is large, so a transition to an excited state is highly unlikely to happen
(relative to a transition to the ground state). This demonstrates that
the fluid does not lose energy (so doesn’t slow down)9 On the other
hand, if E(p) − v · p < 0, the transition to the excited state (lower

9Said differently, if all “excited states” have more energy than the states where all
particles are traveling at velocity v, then the latter state (which is the same as the ground
state in the fluid rest-frame) is the ground state in the wall’s rest frame. Therefore at 0
temperature, in equilibrium all particles are in that ground state – i.e., they don’t slow
down. On the other hand, if some “excited states” have lower wall-frame energy than the
state where all particles move at v, then at 0 temperature, in equilibrium the fluid will
eventually settle into the state where all motion is at the critical velocity.
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energy) is likely. This is the hallmark of energy-dissipation, and will
have the effect of reducing the speed of the fluid.

� The way this is summarized in the literature, for example in the Landau
and Lifshitz series, is to say that a negative change in the internal
energy of A is “dissipated”. What this means in our superfluid example,
is that heat would be absorbed by the wall, allowing the fluid to lose
energy, and ultimately slowing down as a consequence. On the other
hand, a positive change in the internal energy of A could not occur as
a result of dissipation since dissipation is strictly a positive increase of
the wall’s energy. Hence the fluid wouldn’t slow down.

� There may be an alternative analysis following the logic used to derive
the origin of friction of an object moving through a gas or fluid. Reif
discusses this at length in his chapters 15.7 and 15.8 on the relation
between dissipation, fluctuating forces and friction. In general, this is
part of the subject of irreversible processes and in modern parlance
is often subsumed as part of the topic of “coarse-graining”. It should
also be mentioned that Reif also discusses viscosity, as separate from
friction. The same kinds of principle apply.
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