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1 Introduction

These notes supplement the set of notes “Basic formulation of Lagrangian
and Hamiltonian classical and quantum field theory” as coverage of material
in Lancaster prerequisite to Chapter 42. The following topics are covered
(the Chapter numbers refer to Lancaster):

� Statistical mechanics (Chapter 21 – only a tiny bit)

� Noether’s theorem (Chapter 10)

� Non-relativistic charge symmetry (end of Chapter 12.3)

� Broken symmetry (Chapter 26)

� Coherent states (Chapter 27)

� Topological objects (Chapter 29)

At some point, I’ll try to insert a section explaining what a superfluid looks
like and how we’re aiming to characterize it.

2 Statistical Mechanics in Brief

THE PURPOSE OF THIS SECTION IS TO EXPLAIN WHY PARTICLES
AT NEAR-ZERO TEMPERATURES, HAVE VERY LITTLE ENERGY.
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� Statistical mechanics describes the macro-dynamics of a large number,
N , of objects constrained by the values of macro-observables such as
pressure and temperature.

� A state:

– Classical physics – specify the position and momentum of N par-
ticles. (~q1, ~p1, ~q2, ~p2, ..., ~qn, ~pn)

– Quantum physics – specify a state |Ψ〉 in the N -particle Hilbert
space.

� The postulate of equal a priori probabilities: “An isolated system
in equilibrium is equally likely to be in any of its accessible states.” (F.
Reif). How does this work?
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Table 1: Total of three dice adding up to 7
Die 1 Die 2 Die 3
1 1 5
1 5 1
1 2 4
1 4 2
1 3 3
2 1 4
2 4 1
2 2 3
2 3 2
... ... ...
... ... ...

There are 15 possible configurations of three dice that add up to 7.
In the absence of any other information, each such configuration is
equally likely. Since there are 5 configurations where the first die is 1,
then the probability of the first die = 1, is 5/15 = 33%. Similarly, the
probability of the first die = 2 is 4/15 = 27% and the probability of
the first die = 5 is 1/15 = 7%.

The key takeaway: Imagine that “die 1” is a subsystem called “sub-
system RED” and that “dice 1 & 2” make up a subsystem called “sub-
system BLACK”. For each total value of “subsystem RED”, there is
exactly one state. For each total value of “subsystem BLACK”, the
number of states depends on the value. For example, when the total
value of “subsystem BLACK” is = 6, there are 5 states of “subsys-
tem BLACK”. When the total system value is fixed (e.g. = 7) then
the probability that “subsystem RED” has a particular value
depends on the number of states for the two subsystems. In
our example, lower values of “subsystem RED” have higher
probabilities.
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A

B

� Imagine two subsystems in thermal interaction with one another and
with a total energy of E0. The total energy is obtained by adding
up the energy of individual molecules (each acts like a die). System
A is much smaller than System B and therefore has fewer states. (We
call System B a “heat reservoir”.) Then – assuming the postulate of
equal a priori probabilities – we can compute the probability of finding
a state s of System A with energy E.

Ps = Ce−βE (1)

(See Lancaster page 196.) This is known as the Boltzmann factor.
The parameter β is related to the number of states available to the
reservoir (system B) and turns out to be inversely proportional to the
temperature.

β =
1

kT
(2)

where k is the Boltzmann constant.

� Therefore when β is large (temperature is small) energetic
states are suppressed.

3 Noether’s theorem

Lancaster Chapter 10.
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When there is a continuous symmetry, there is a divergenceless
current and also a conserved charge.

Let φα(x) be a family of fields parameterized by α so that φ0(x) = φ(x) and
L(φα) = L(φ). This is a symmetry. For example consider the Lagrangian

L(φ) = ∂µφ†∂µφ−m2φ†φ− g(φ†φ)2. (3)

Let φα = eiαφ. We see that if in Eq. (3) we substitute φα for φ, and φ†α for
φ†, then the Lagrangian doesn’t depend on α.

Then define

Dφ =
∂φα
∂α

∣∣∣∣∣
α=0

. (4)

Noether’s theorem says that there is a current known as the Noether current
and defined as

JµN(x) =
∂L

∂ (∂µφ)
(x) ·Dφ(x), (5)

and with the property that

∂µJ
µ
N(x) = 0. (6)

Note that Lancaster presents a slightly more general version of Noether’s
theorem, but we won’t require that. On the other hand, Lancaster has not
explicitly referenced the situation where there are multiple fields that are
transformed by the symmetry. I’ve chosen to remedy this by a slight abuse
of notation. Extend φ to mean the vector (φ1, φ2, ...). ∂L

∂(∂µφ)
is also a vector(

∂L
∂(∂µφ1)

, ∂L
∂(∂µφ2)

, ...
)

, as is Dφ = (Dφ1, Dφ2, ...).

Furthermore, as a consequence of the above, there is a conserved charge QN

(again, this could be a vector) defined as

QN =

�
d3xJ0

N . (7)

The conservation of QN means that it doesn’t change with time. In other
words,

dQN

dt
= 0. (8)

All of the above holds both in the classical theory and later, when we promote
the classical fields to quantum operators, it also holds in the quantum theory.
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In addition, in the quantum theory, we can derive[
Q̂N , φ̂

]
= −iDφ̂. (9)

The “hat” denotes that the quantities are operators.

Let’s apply all this to φα (see Lancaster 12.2).

Dφ(x) =
∂φα
∂α

∣∣∣∣∣
α=0

=
∂ (eiαφ)

∂α

∣∣∣∣∣
α=0

= iφ.

(10)

We’re not done. There is a second current arising from the transformation
of φ†. In just the way we obtained Dφ, we can also derive that Dφ† = −iφ†.

Now we can construct the Noether current using Eqs. (5) and (3), and setting
φ =

(
φ, φ†

)
.

JµN(x) =
∂L

∂ (∂µφ)
(x) ·Dφ(x)

=
(
∂µφ†, ∂µφ

)
·
(
iφ,−iφ†

)
= iφ∂µφ† − iφ†∂µφ.

(11)

Finally, we can construct the charge using Eq. (12).

QN =

�
d3xJ0

N

= i

�
d3x

(
φ(x)∂0φ†(x)− iφ†(x)∂0φ(x)

)
.

(12)

This quantity is time-independent, i.e., conserved.

4 Coherent States

4.1 A whirlwind tour of quantum mechanics

In classical particle mechanics, we have a quantity like “the position of the particle”
x at “a time t”. In quantum mechanics, we have a quantity like “the expec-
tation value of a position operator for a particle-state |s〉 at “a time t”. We
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picture these two quantities as representing more or less the same kind of
thing. However, in classical mechanics, when we say “x(t)”, we mean two
things: (a) the particle position – measured from the origin – at time t is x
and (b) the particle position – measured from ε – at time t is not x. We can
say that the position of the particle is “exact.” The same might not be true in
quantum mechanics. The expectation value of the position operator at time
t is x but if you shift the position operator to an operator measuring the
position displaced by ε, the expectation value may be non-zero. Or, another
(intuitively easier) way of saying the same thing, is that the dispersion (after
all, the term ‘expectation value’ tells us we are discussing probabilities) is
non-zero.

The challenge in QM is how to picture all this. Sometimes we focus on the
state, sometimes we focus on the observable, and sometimes we focus on the
expectation value. These objects are intertwined in ways unlike the corre-
sponding classical objects. Moreover, when we talk about time-evolution,
sometimes we describe the state as evolving, sometimes we describe the ob-
servable as evolving and sometimes both.

One way of proceeding is to identify certain observable-state combinations
that are “exact”. As an example, consider the state |x〉 defined to be the
state with the property that x̂|x〉 = x|x〉. Be careful with the overloading of
the symbol “x”. The object x̂ should not be pronounced “hat x”. Rather, it
should be pronounced “the position operator”. At the same time, recognize
that the notation |x〉 is entirely ambiguous. It’s meaning is clear only in con-
text. In particular, in the context above, its definition is “a (normalized)1

eigenstate of the position operator, with an eigenvalue of x”. Just to appre-
ciate the subtlety, consider the expectation value of the position operator for
the state which is a position-eigenstate with eigenvalue “y”. We would write
this as 〈y|x̂|y〉 and its value would be y. I recommend that you think this
through until you are completely comfortable with its meaning. Finally note
that the dispersion (of the probability distribution of |x〉 with respect to the
position operator) is 0. Hence we have a “natural” way of dealing with an
“exact” position in quantum mechanics.

Of course, what goes along with this formalism is that states that are position-
exact, are incapable of being momentum-exact. That’s Heisenberg’s uncer-
tainty principle. It’s also what makes it very difficult to have an intuitively

1For the purists amongst you, the position eigenstates, at least in the case where
position lies on a continuum, aren’t actually normalizable. We need to treat things more
rigorously but that can be done.
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clear picture of states – even position eigenstates. Be that as it may, QM pro-
ceeds by noting that any state can be written as a superposition of position
eigenstates. Sometimes the position isn’t really important, but the energy is.
In that case, we might be interested in states of “exact energy”. Since such
states are superpositions of position eigenstates, we tend to picture them in
terms of a weighted-graph of the position-eigenvalues, where the weighting is
proportional to the amplitudes of the corresponding position-eigenstates in
the superposition. At best, this is just a heuristic picture.

Here’s where we’re going. Just like our definition of position eigenstates, we
can define field eigenstates by φ̂(x)|φ〉 = φ(x)|φ〉. Just as for the position
operator, we shouldn’t pronounce φ̂ as “hat φ” but rather as “the field op-
erator”. Again, the state notation |φ〉 is ambiguous and must be understood
from context. In this case, the context involves the field operator and the
definition of the state is as “the eigenstate of the field operator, which has
the eigenvalue(s) φ(x). Just as before, these states are “exact” with respect
to the field operators.

And just as before (more or less), these states – known as coherent states –
can be superimposed to form any other state of interest in our theory. Much
of our experience in fundamental-particle field theory is centered around scat-
tering experiments and in particular, scattering at relatively large momenta.
The momentum eigenstates can be written in terms of coherent states, but
this doesn’t typically lead to useful insights. In many-body theory, our ex-
periences are more varied. In particular, at very low temperatures and very
large systems (e.g. a fluid), the states of interest are the field eigenstates.
These are most readily visualized as the field solutions to classical equations
of motion.

4.1.1 Proof that the sum
∑∞

n=1 n = − 1
12

.

One way of understanding the relationship between quantum and classical
many-body theories, is to note that (a) classical theories tend to agree with
quantum theories when most particles have low momenta (b) large-momenta
behavior modifies the classical theories. The exact way in which all this hap-
pens can be quite subtle, especially because the unmodified classical theory
often has divergences when extended to include arbitrarily large momenta.
In fact, the classical statistical theory of electromagnetism in the late 19th
century led to an energy-divergence known as the ultraviolet catastrophe,
a problem that was solved by Planck’s discovery of quantum mechanics. I
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think that one interesting way to illustrate how this kind of thing works, is
to examine the “classical problem” of summing integers.

c = 1 + 2 + 3 + 4 + 5 + 6 + ...

4c = 4 + 8 + 12 + ...

c− 4c = 1− 2 + 3− 4 + 5− 6 + ...

−3c = lim
x→1

d

dx

−1

(1 + x)
=

1

(1 + 1)2
=

1

4

c = − 1

12

(13)

Clearly this is nonsense. And yet ...

See Wikipedia under “1 + 2 + 3 + 4..”. This summation has a famous history
and the above trick was even given by the famous mathematician Ramanu-
jan. It’s an example of the kind of practice engaged by field theorists and
which goes under the heading of “renormalization theory” (sometimes things
are less abstruse – for example, Planck’s original cure of the ultraviolet catas-
trophe). The point is that there is a way in which the sum can be modified
to something that converges but depends on a parameter s whose limit is
taken after the sum, but not before. For example, consider the function

ζ(s) = 1−s + 2−s + 3−s + ... (14)

When s → −1, the series looks the same as before and has the same issues
as before. However, if we follow the steps in the trick-solution, we end up
with an expression that can be analytically continued in s from regions where
each sum converges, to s = −1, and which leads to the same result. One
might object to using the trick of analytic continuation, but there are other
regularization methods, including one devised by Ramanujan, that lead to
sensible answers.

A physicist has the obligation to justify the use of regularization methods,
and more importantly has to assure that different “justified” methods lead to
the same answers. That has been the focus of research of many physicists and
mathematical physicists for decades, with lots of progress both theoretically
and with computer simulations.

The particular series above appears in string theory and with accepted reg-
ularization methods leads ultimately to the famous result that certain string
theories are only consistent in 26 dimensions.
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4.2 Motivation: connecting classical EM to QED

What is the relationship between a classical field like the electric field E, and
the quantum field operator Ê? It seems plausible that in some limit, the
two quantities are related. In the usual correspondence between quantum
and classical physics, we’d expect that the classical field E is the “measured
value of the field observable in some state of the system”. We’d write this as

〈s|Ê|s〉. (15)

How would we characterize that state? Let’s imagine that the state describes
a single photon of momentum p′. Then we would write

〈p′|Ê|p′〉. (16)

Actually, for the electric field, we’d also want to specify the polarization of the
photon but let’s ignore that for simplicity. We’ll now show this expectation
value is 0.

In the spirit of simplicity, let’s pretend that the electric field is a scalar Ê(x)
and that we can do the usual mode expansion so that, up to normalization,

Ê(x) = ÊC(x) + Ê†C(x) (17)

where

ÊC(x) =

�
d3p

p
âpe

−i(pt−p·x). (18)

Since we plan to evaluate 〈p′|ÊC |p′〉, let’s consider the term in the mode
expansion, 〈p′|âp|p′〉. Recall that |p′〉 = â†p′ |0〉. Also recall that

âpâ
†
p′ = â†p′ âp + δ(3)(p− p′). (19)

Therefore
âp|p′〉 = âpâ

†
p′ |0〉

= â†p′ âp|0〉+ δ(3)(p− p′)|0〉
= δ(3)(p− p′)|0〉,

(20)

where the last line follows from the fact that âp|0〉 = 0.

Now we are ready to evaluate 〈p′|âp|p′〉. From the last equalities, we get

〈p′|âp|p′〉 = δ(3)(p− p′)〈p′|0〉
= δ(3)(p− p′)〈0|âp′ |0〉
= 0,

(21)
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where the second line follows from the fact that 〈p′| = 〈0|âp′ and the third
line follows from the fact that âp′ |0〉 = 0.

We’ve shown that the mode expansion annihilation operators contribute 0 to
the expectation value of the electric field in a single photon state. The same
kind of argument shows that the mode creation operators act the same way,
and therefore that the electric field has an expectation value of 0.

Although it might not be immediately obvious, it turns out that the field
expectation value in an N -photon state is also 0. The reason is that the
ladder operators change the photon number on the right by either plus or
minus 1, and therefore we end up with the state on the left having a different
number of photons than the state on the right – which means the states are
orthogonal.

This result is a bit strange. How can our classical limit make sense if the
electric field has an expectation value of 0 for any N -photon state? The
answer is that the appropriate states to be used in the classical limit, are
states with an inexact number of photons. More precisely, the states must
be superpositions of differing numbers of photons. For example, a one-photon
state plus a two-photon state etc. This turns out to be the key insight for
the construction of coherent states. The development of quantum optics
by the Nobel laureate Roy Glauber, made extensive use of these coherent
states (which were given their name by Glauber, but were first discovered by
Schrodinger).

What we want, in connecting quantum to classical electromagnetism, is a
way to define a state whose field expectation value is E(x), for any choice
of real E . One way to achieve this, would be to find a (normalized) state,
which we’ll call |E〉, with the property that ÊC(x)|E〉 = EC(x)|E〉 and where
EC is defined, nonuniquely, by E = EC + E∗C .2 That is, the state |E〉 is
simultaneously an eigenvector of the operator ÊC(x) for every value of x.
Notice that 〈E|Ê†C(x) = 〈E|E∗C(x). From these observations, we see that |E〉

2It would seem that we are adding some unnecessary complexity (no pun intended)
by rewriting the real field E as a sum of two complex fields whose imaginary parts add
up to 0. I believe we need to do this because of properties of the ladder operators that
we’ll encounter later, although I haven’t tracked down the culprit that forces us, in this
treatment of coherent states, to deal with non-real fields.
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has the property that

〈E|Ê(x)|E〉 = 〈E|ÊC(x) + Ê†C(x)|E〉
= (EC(x) + E∗C(x)) 〈E|E〉
= E(x)

(22)

where the last line follows from the normalization of the state. So now we
have found a state whose field expectation value is whatever we want it to
be. We call such a state a coherent state.

Since the fields obey the Euler-Lagrange and other equations, we can see
that the expectation values will obey those equations, so that gives us a
clear connection between classical EM and QED.

4.3 Constructing the coherent states

We continue to work backwards. The classical electric field (simplified to be
a scalar field) can be written (up to normalization) as

E = EC + E∗C (23)

where EC can be written as a Fourier transform (a.k.a. mode expansion)

EC(x) =

�
d3p

p
α(p)e−i(pt−p·x). (24)

I’ll use the notation EC rather than Ê to make it clear that we’re talking
about an ordinary (complex) function. The coefficients α(p) are complex
functions and are essentially the Fourier coefficients of the electric field.

Now suppose we can find a state which we’ll call |α〉, with the property that
ap|α〉 = α(p)|α〉. Then, plugging in Eq. (18).

ÊC(x)|α〉 =

�
d3p

p
âpe

−i(pt−p·x)|α〉

=

�
d3p

p
α(p)e−i(pt−p·x)|α〉

= EC(x)|α〉.

(25)

If we compare this to the previous section, we see that the way to construct
an electric-field eigenstate, is to construct an annihilation-operator eigenstate
characterized by the Fourier coefficients of the electric field.
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So our problem has reduced to the problem of solving âp|α〉 = α(p)|α〉. We
make one further observation which simplifies our task. Recall that states
in the Hilbert space are constructed from the Fock state basis, where basis
vectors are of the form |np1

〉⊗|np2
〉...⊗|npm〉, with np denoting the number of

particles having momentum p. The Fock space is written formally as
⊗

pHp

or suggestively as Hp1
⊗Hp2

⊗ ....

We employ this Fock-space decomposition to further reduce our coherent-
state construction to the simpler problem of â|α〉 = α|α〉. In other words,
construct a state which is an eigenvector of the annihilation operator, with
the eigenvalue α. This formally becomes an exercise in simple harmonic
oscillator quantum mechanics and is Lancaster’s starting point. The simplest
thing to do is to write down the answer and then show that it’s correct.

|α〉 = c0

(
1 +

α

1!
â† +

α2

2!

(
â†
)2

+
α3

3!

(
â†
)3

+ ...

)
|0〉, (26)

where c0 is chosen so that 〈α|α〉 = 1. Let’s see what happens when we apply

â to one of the terms in the sum, for example the term c0
α2

2!

(
â†
)2 |0〉. We

use the identity, to be proven shortly,

â
(
â†
)n

=
(
â†
)n
â+ n

(
â†
)n−1

. (27)

Then

â

(
c0
α2

2!

(
â†
)2) |0〉 = c0

α2

2!
â
(
â†
)2 |0〉

= c0
α2

2!

(
(â)2 â+ 2â†

)
|0〉

= αc0

(α
1!
â†
)
|0〉,

(28)

where the last line follows from the fact that â|0〉 = 0. We see that by
applying the annihilation operator to the third term in the series for |α〉,
that we get the second term in the series, but multiplied by α. It turns
out that this pattern holds for all terms in the series – namely that the
annihilation operator changes the nth term into α times the (n − 1)st term.
This demonstrates that â|α〉 = α|α〉, as claimed.

The only remaining part of the proof is to show Eq. (27). We proceed by

induction. Suppose we’ve shown that â
(
â†
)n

=
(
â†
)n
â + n

(
â†
)n−1

. Now
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consider â
(
â†
)n+1

.

â
(
â†
)n+1

= ââ†
(
â†
)n

=
(
â†â+ 1

) (
â†
)n

= â†â
(
â†
)n

+
(
â†
)n

= â†
((
â†
)n
â+ n

(
â†
)n−1)

+
(
â†
)n

=
(
â†
)n+1

â+ (n+ 1)
(
â†
)n
.

(29)

This proves the induction step (and it’s a simple matter to show that the
theorem is true for n = 1, starting off the induction sequence).

Now rewrite the series for the momentum-p coherent state |α〉p, as an expo-
nential (from which we can easily derive c0), so that

|α〉p = e−
|α|2
2 eαâ

†
p |0〉. (30)

Finally we deal with the coherent states of the multiparticle Fock space. This
is just a product-state so can be written as

|α〉 =
∏
p

e−
|α|2
2 eαâ

†
p|0〉

= e−
N|α|2

2 eα
�
d3pâ†p|0〉

(31)

where N is the total number of particles in the system (in elementary par-
ticle field theory, N is an infinite constant, but which may factor out in
applications.)

4.4 Some properties of coherent states

The usual way to find properties of a state is to compute the expectation
value of observables as measured in that state. So if the state is |α〉 and if
O is an observable, we would compute the expectation value 〈α|O|α〉.

Another popular way to find properties (which turns out to be equivalent to
the above) is to compute the probability amplitude that the state of interest,
in this case |α〉, is found to be in a known state |s〉. We would compute 〈s|α〉.
Another way of thinking of this, is that |α〉 is a superposition of orthonormal
states, one of which is |s〉. The coefficient of |s〉 in that superposition, is
〈s|α〉.
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4.4.1 Number of quanta

We start by considering states that describe particles of momentum p. The
math is just the same as for a single linear harmonic oscillator. How many
particles are there in a coherent state? There are several ways of approaching
that question. But what’s critical to note, is that there isn’t a precise answer.
In fact, the situation is reminisce of the Heisenberg Uncertaintly Principle.
If we know that a state is coherent, then it isn’t certain how many particles
are in that state. Instead, we can ask what the probability is of finding n
particles.

Pn = |〈n|α〉|2. (32)

This can be easily computed by noting that

|n〉 =

(
â†
)n

√
n!
|0〉. (33)

Then use the expansion of |α〉 of Eq. (26), and the fact that 〈n|m〉 = δn,m,
to get

Pn = e−|α|
2 |α|2n

n!
(34)

It is easy to compute the average and standard deviation of this distribu-
tion. Equivalently, we note that the average number of particles is just the
expectation of the number observable â†â so we compute

〈α|â†â|α〉 = |α|2〈α|α〉 = |α|2, (35)

where we’ve invoked the definition of the coherent state, namely â|α〉 = α|α〉.

What we’ve shown is that we can construct a coherent state with an average
of N particles, by simply taking α =

√
N .

Figure 1: Lancaster Fig. 27.1
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Lancaster also derives the fractional uncertainty (standard deviation of the
random variable n̂ divided by its mean) as

∆n̂

〈n̂〉
=

1√
N
. (36)

This can be interpreted by saying that for a coherent state with a very large
average number of particles, the uncertainty (a.k.a. dispersion) is small. Of-
ten we are interested in situations where the number of particles is “macro-
scopic” – of the order of 1023.

As a reminder, this distribution is for a specific momentum. When describ-
ing a field, each momentum is associated with an “α” that is the field’s
Fourier coefficient – so the average number of particles of momentum p is
the modulus-squared of the Fourier coefficient.

4.4.2 Time evolution

The following pertains to the free multiparticle Hamiltonian. Recall that the
free Hamiltonian acts on number eigenstates by

Ĥ =
∑
p

(
n̂p +

1

2

)√
p2 +m2 (37)

where n̂p is the number operator which acts on the state
(
|np1
〉 ⊗ ...|np〉...⊗ |npn〉...

)
as n̂p

(
|np1
〉 ⊗ ...|np〉...⊗ |npn〉...

)
= np

(
|np1
〉 ⊗ ...|np〉...⊗ |npn〉...

)
. We’ve

shown that n̂p = â†pâ
†
p. Also, the number 1

2
which appears in the Hamiltonian

is just a constant (called the “0-point energy”) that can be dropped.

The state |α〉 has a time-evolution governed by Schrodinger’s equation and
which can be written as

|α〉(t) = e−iĤt|α〉

= e
−i
(∑

p(n̂p+
1
2))
√
p2+m2

)
t|α〉

=
∏
p

e
−i
(
(n̂p+

1
2))
√
p2+m2

)
t|α〉.

(38)

Sometimes, instead of the sum in the exponent, we write an integral to
indicate that continuum limits are being taken. However, I don’t know what
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the appropriate continuum-limit “product” notation would be, so I’ve left
things as sums and products. Once again, we expand |α〉p with Eq. (26)

|α〉p = c0

(
1 +

α

1!
â†p +

α2

2!

(
â†p
)2

+
α3

3!

(
â†p
)3

+ ...

)
|0〉

= c0

(
|0〉+

α√
1!
|1〉+

α2

√
2!
|2〉+ ...

)
.

(39)

I’ve been slightly sloppy with notation. A different value of α can be used
for each momentum, so we should write α(p).

When we apply the time evolution operator as in Eq. (38), we obtain

|α(p)〉(t) = |α(p)e−i
√
p2+m2t〉. (40)

The notation is interpreted as follows: The state |α(p)〉 is a multiparti-
cle state represented in momentum Fock space and the state |α〉 is |α〉 =⊗

p |α(p)〉. On the LHS, we have the state which has evolved from the co-
herent state |α(p)〉 after a time t. In this notation, |α(p)〉(0) = |α(p)〉. On
the RHS, we have a phase factor multiplied by a time-dependent coherent

state where α(p)→ α(p)e−i
√
p2+m2t.

The key observation here, is that a coherent state evolves into a new coherent
state.

4.4.3 Completeness

Start by considering a single mode Hilbert space – i.e., the space of states of
particles with momentum p, and an arbitrary state |s〉 in that space. Then
it can be shown (the proof is a bit involved) that we can write

|s〉 =
1

π

�
d2α|α〉〈α|s〉 (41)

where the integral is over both the real and imaginary part of α. This identity
can be summarized as a “partition of unity”

1

π

�
d2α|α〉〈α| = 1 (42)

Although this identity can be very useful, it’s important to note that the
coherent states aren’t orthogonal.
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Similarly, for fields, we can show a functional integral partition of unity3

�
Dψ|ψ〉〈ψ|. (43)

4.5 Phase and number

Lancaster, in chapter 27.3, discusses the idea of a phase operator, and points
out some issues with attempting to define such an object. I think the discus-
sion is interesting and motivational, so read it for background. 4 I’ll cover
part of the discussion.

First notice that the idea of a phase operator is related to coherent states.
A coherent state for a single mode, is characterized by a complex number
α (more generally, for a field, the state is characterized by α(p)). We write
α = |α|eiθ. θ is known as the phase of the coherent state. Recall that coher-
ent states are used when describing states that behave somewhat classically.
So, for example, when discussing electromagnetic fields, these can behave
somewhat classically when we take the expectation value of the electromag-
netic field operators in a coherent state characterized by a complex variable
E(p). The phase is important because it accounts for classical interference
phenomena. On the other hand, when using n-particle states, the phase is
dispersed (that is, the phase is essentially unknown) and we regard those as
incoherent.

The phase-number relationships are a way of quantifying these ideas. We
start by defining operators ê− and ê+. These are the same operators that

Lancaster defines respectively as êiφ and ê−iφ, but I want to avoid the temp-
tation of regarding these objects as composite-operators of some kind. The
operators are defined by

ê−|n〉 = |n− 1〉
ê+|n〉 = |n+ 1〉

(44)

First let’s see what these operators have to do with the phase. Using the

3Functional integrals require some rigor in their definition. One approach is to generate
the space of functions from some basis, such as plane waves. If we were using the plane-
wave basis, then a linear superposition would be described by a Fourier transform, and
the functional integral would be formally described as Dψ =

∏
p π

−1dαp.
4One caveat: Lancaster mentions an operator (n̂)−

1
2 . I don’t believe such an operator

can be defined, since n̂|0〉 = 0 and therefore n̂ isn’t invertible, and a fortiori, its square-root
isn’t invertible.
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representation of the coherent state as given by Eq. (39),

ê−|α〉 = c0

(
α√
1!
|0〉+

α2

√
2!
|1〉+ ...

)
= c0α

(
1√

1
√

0!
|0〉+

α√
2
√

1!
|1〉+ ...

)
= c0α

1̂√
n+ 1

(
1√
0!
|0〉+

α√
1!
|1〉+ ...

)
= α

1̂√
n+ 1

|α〉.

(45)

I’ve introduced the operator 1̂√
n+1

. This is defined by

1̂√
n+ 1

|n〉 =
1√
n+ 1

|n〉. (46)

It’s not hard to show that this operator is well-defined and is the inverse of

the (invertible operator)
√̂
n+ 1 defined by

√̂
n+ 1|n〉 =

√
n+ 1|n〉. (47)

Returning to Eq. (45), compute the expectation value of ê−.

〈α|ê−|α〉 = α〈α| 1̂√
n+ 1

|α〉. (48)

I’m now going to wave my arms slightly. We know that 〈α|n̂|α〉 = |α|2 and
that when |α| is large, the dispersion of n̂ is small. In other words, when
you superpose n-particle states to form the coherent state |α〉, the dominant
contributions come from the states with approximately |α|2 particles. There-
fore, whenever we see an expectation value of a function of n̂, we can replace
that expectation value by the same function of |α|2. For example, when |α|
is large, 〈α| 1̂√

n+1
|α〉 ≈ 1√

|α|2+1
≈ 1
|α| .

Then Eq. (48) becomes

〈α|ê−|α〉 ≈
α

|α|

=
|α|eiθ

|α|
= eiθ.

(49)
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At long last! We see that in a coherent state ê− has (approximately) the
value of the exponential of the phase (thus justifying the Lancaster notation

êiφ ≡ ê−).

Similarly, we can show that when |α| is large, 〈α|ê+|α〉 ≈ e−iθ. Lancaster
then defines

ĉosφ =
1

2

(
êiφ + ê−iφ

)
,

ŝinφ =
1

2i

(
êiφ − ê−iφ

)
,

(50)

and the expectation values of these operators are respectively approximately
cos θ and sin θ. Finally, we have operators that can be used as proxies for
the phase-operators that extract the phase of coherent states as described
earlier.

Our next step is to derive an uncertainty relationship, where we find that an
exact knowledge of the phase implies an inexact knowledge of the particle-
number and vice versa.

From above, it can be derived5

[n̂, ĉosφ] = −iŝinφ

[n̂, ŝinφ] = iĉosφ,
(51)

and in the usual way one derives uncertainty relations from commutation
relations, we get

∆n∆ cosφ ≥ 1

2
|〈ŝinφ〉|

∆n∆ sinφ ≥ 1

2
|〈ĉosφ〉|.

(52)

4.6 Relationships between classical and quantum field
theories on N-particle systems

So far, the best exposition I’ve found on this, is in Superfluid States of Matter,
by Svistunov, Babaev and Prokof’ev (SBP) https://people.umass.edu/bvs/Book.pdf.
SBP adopt an approach to superfluids, wherein much of their analysis is done

5Frankly, I haven’t come up with an entirely straightforward derivation but for a com-
plete discussion of all this, see the lengthy review by Carruthers and Nieto in Reviews of
Modern Physics: https://astro.swarthmore.edu/comps/phase.pdf
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using classical Hamiltonian theory. They point out in the introduction to
their book, that Planck’s constant always appears in the quantum theory
via the ratio ~

m
, and that classical results can be obtained by substituting

a parameter γ wherever in the quantum Hamiltonian, we see the ratio ~
m

.
Until page 305, the authors proceed to examine superfluidity using purely
classical theory. They cover the Landau criterion, Bogoliubov dispersion,
phonons, rotons, topology, vortices, etc. Starting on page 305, the authors
introduce the theory of coherent states and cover lots of interesting material.
Rather than get hung up on the various problems associated with the proper
definition of phase, they focus on an approach known as “coarse-graining”.
Roughly speaking, this is an approximation procedure which smooths over
short distances. Then in the appropriate limits (which admittedly I haven’t
worked through) one can treat coherent states as a proper orthogonal basis
with a well-defined phase operator (don’t worry if this sentence is confusing
– I haven’t mastered any of the details of what this actually means and I
don’t think the book fills in all the necessary details).

In summary, the authors conclude that the classical-quantum correspondence
can be used to justify all of the classical-superfluid results provided one re-
stricts attention to low-temperature systems where small-momentum states
are highly populated. The quantum-specific effects only show up for low-
population momentum states. For Chapter 42, those effects won’t concern
us.

Here are a few points to help flesh out the classical-quantum connections.

� SBP derives path integrals on pages 297 - 329. These are used both
for quantum scattering (time-evolution) as well as for quantum statis-
tical mechanics (the statistical-mechanics “partition function”). For
concreteness, here are the results.

– The evolution operator is

e−iHt =

�
DψeiS|ψ(t)〉〈ψ(0) (53)

where S is the classical action. For the non-relativistic many-body
theories we’ve been looking at,

S[ψ] = −
� t

0

dt

�
d3xIm

(
ψ∗
∂ψ

∂t

)
+H[ψ] (54)
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– The statistical-mechanics partition function is

SE[ψ] (55)

where SE is the classical-field Euclidean action

SE[ψ] = −
� β

0

dτ

�
d3x

(
ψ∗
∂ψ

∂τ

)
+H[ψ] (56)

The integrals are formally over the “paths” ψ and are derived using co-
herent states represented as |ψ〉 (think of this field-based path integral
as a generalization of the single-particle path integral whose classical
path is described as x(t) and whose basis states are represented as |x〉).
In the path integral formalism, the dominant contributions come from
the paths for which the action is an extremum ( δS

δψ
= 0). These paths

are the solutions of the Euler-Lagrange equation. Ultimately, that is
the reason why the classical solutions of the E-L equations are also
relevant in QM.

� For a free theory, a coherent state consisting of free particles of momen-
tum p evolves into another coherent state whose phase factor is e−iωpt

times the original state. This is proven in subsection (4.4.2) above
and is the same evolution as we’d see for a complex free classical field
whose energy is ωp. In other words, if we solve for the time-evolution
[φ(x)](t) ≡ φ(x, t) of the free-field classical Euler-Lagrange equation
with initial condition φ(x,0) = φ0(x), then in the corresponding quan-
tum theory (in the Schrodinger representation), coherent states will
evolve from |φ0〉 to |[φ](t)〉.

� When the theory isn’t free, we can still solve (in principle) the Euler-
Lagrange equations to find the time-evolution of the classical field.
It’s also true that in the quantum theory an initial coherent state will
evolve in time – in the Schrodinger representation. Just to avoid no-
tational saturation, call the quantum field operators F̂(x, t). These
satisfy the (operator) Euler-Lagrange equations. Now we have time-
dependence of the operators, so we are in the Heisenberg representation.
In that representation, the initial coherent state wouldn’t evolve. How-
ever, consider the expectation value 〈φ0)|F̂(x, t)|φ0〉, where (by defini-
tion) we’ve defined the coherent state to have the eigenvalue property
F̂(x, 0)|φ0〉 = φ(x)|φ0〉. Since the field operator satisfies the Euler-
Lagrange equation, then so does the expectation value. So the expec-
tation value must have the same solution as the classical field.
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However, there is nothing we’ve shown that guarantees that
the initial coherent state will, over time, remain an eigenstate
of the field (either in the Schrodinger or Heisenberg picture).
So we no longer have the simple correspondence between coherent state
and classical field, that we saw in the free theory.

� SBP pages 301-304 demonstrate that for states with high occupation
number (for low temperatures, these are low-momentum states) coher-
ent states evolve into new coherent states that follow the evolution of
the classical field. Here are some of the highlights of this derivation.

– With the effective Hamiltonian that we have previously hypothe-
sized for our many-body theory, the Euler-Lagrange equation for
an extremum ψ0 looks like

i
∂ψ0(x, t)

∂t
=

[
−∇2

2m
− µ(x) +

�
d3x′ [ψ0(x

′, t)]
2
U(x− x′)

]
ψ0(x, t),

or

ψ0(x, t+ dt) = ψ0(x, t)− idt
[
−∇2

2m
− µ(x) +

�
d3x′ [ψ0(x

′, t)]
2
U(x− x′)

]
ψ0(x, t).

(57)
This is known as the Gross-Pitaevskii equation and looks like a
nonlinear extension of the Schrodinger equation (but remember,
ψ is a field and not a wavefunction).

– Then SBP go on to examine how the coherent state |φt〉 evolves
as a function of t. The objective is to (a) demonstrate that the
state maintains its coherence going from time t0 to time t and (b)
evolves according to the same differential equation as the classical
ψ0. Notice that we have implicitly taken the Schrodinger repre-
sentation where the state evolves, but the field ψ̂(x) does not.

– We use the notation |s(t)〉 to denote a generic state at time t and if
the state evolves according to the Hamiltonian evolution operator

we have |s(t0 + dt)〉 =
(

1− iĤdt
)
|s(t0)〉.

– We also use the notation |Φ(x)〉 to denote the eigenstate (simul-
taneous for all x) of ψ̂(x) with an eigenvalue Φ(x). By definition,
|Φ(x)〉 is a coherent state. Let us take |s(t0)〉 ≡ |Φ(x)〉. Then
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SBP show that

ψ̂(x)|s(t0 + dt)〉 ≈{
Φ(x)− idt

[
−∇2

2m
− µ(x) +

�
d3x′ [Φ(x′)]

2
U(x− x′)

]
Φ(x)

}
|s(t0 + dt)〉

(58)

– This equation tells us that |s(t0 + dt)〉 is an eigenstate of the
field operator (i.e. a coherent state), with the eigenvalue in curly
braces. But by comparing that eigenvalue to the RHS of Eq. (57),
we see that we can replace it by the LHS of Eq. (57), but with
ψ0(x, t) replaced by Φt(x) ≡ Φ′(x, t). That is, the curly braces
can be replaced by Φt0+dt(x), with the understanding that Φ′(x, t)
is a solution of the Gross-Pitaevskii equation.

– The net result of all this is that if we take a coherent state (with
large occupation numbers in the lower momentum states) at time
t, and if that state is represented by |Φ(x, t)〉, then at time t+ δt,
the evolved state will be the coherent state |Φ(x, t + δt)〉, where
Φ is precisely the same function of t that would be obtained by
solving the classical field equation for Φ.

� Many of the intuitions about symmetry-breaking, superfluidity and vor-
tices, come from considerations of the phase (we haven’t encountered
this yet, but we will). In the preceding section on coherent states, we’ve
discussed the phase operator which gives us a way of discussing phase
even for states that aren’t coherent (remember, for a coherent state,
the “phase” is simply the phase of the “eigenvalue” φ(x).) Based on
the above correspondence between classical fields and coherent states,
we see that if the classical phase evolves like θ(t), then the phase of the
corresponding coherent state evolves the same way.
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