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Stat Mech: The Law of Equal A Priori Probability
The postulate of equal a priori probabilities: An isolated system
in equilibrium is equally likely to be in any of its accessible states.

Table: Total of three dice adding up
to 7

Die 1 Die 2 Die 3
1 1 5
1 5 1
1 2 4
1 4 2
1 3 3
2 1 4
2 4 1
2 2 3
2 3 2
... ... ...
... ... ...

3 dice add up to a total of 7.
15 possible configurations.
I 5 configs where the red system

is 1, so P(1) = 5/15 = 33%.

I Similarly, P(2) = 4/15 = 27%.

I Etc. until P(5) = 1/15 = 7%.



Stat Mech: Thermal Distribution and Chemical Potential
Figure: Total energy is Etot. Total particles = Ntot.

A

B

I System B has many more states than system A.

I Thermal equilibrium implies Law of Equal a Priori Probability =⇒
Thermal distribution

I A and B are free to exchange energy but not particles =⇒
PA(E ) = Ce−βE (β = inverse temperature).

I A and B are also free to exchange particles =⇒
PA(E ,N) = Ce−β(E−µN) (µ = chemical potential).



Stat Mech: Low Temp

At low temperature, the probability of A being in the ground
state is much larger than in any other state.

PROOF

I Call E − µN the “effective energy” (EE) of the state.

I E0 = lowest EE (ground state(s)).

I Suppose E > E0.

I If β is very large, e−βE << e−βE0 .

I Low temp =⇒ high β

I So at low temp, P(E0,N) >> P(E ,N).

So in low-temperature many-body physics, focus on the
ground state and lowest excited states.



Second-Quantization: Number Representation

I Basis states |ψp〉 = |Np1
,Np2

, ...〉 (Npi free particles with pi ).

I |Np1
,Np2

, ...〉 ≡ |Np1
〉 ⊗ |Np2

〉 ⊗ ...
I For bosons, the particles with equal momenta are indistinguishable.

I Creation operators:

|Np〉 =

(
a†p
)Np√
Np!
|0〉

where [ap, a
†
p′ ] = δ(p− p’).

I More generally, states are indexed by α rather than p.

|Nα〉 =

(
a†α
)Nα

√
Nα!

|0〉



Second-Quantization: Two-body
I The free Hamiltonian Hfree is

Hfree =

�
d3p

p2

2m
a†pap.

where we can show that a†pap is the number operator Np.

I General two-body interaction is

H
(2)
I =

N∑
a<b

hab.

I In the number representation, two particles change states.

H
(2)
I =

∑
αβγδ

(
H

(2)
I

)
αβγδ

a†αa
†
βaγaδ.

I For example,

H
(2)
V =

1

2

�
d3p1d

3p2d
3qṼ (q)a†p1+qa

†
p2−qap2

ap1
.



QFT – Equivalence to Second Quantization

I Define a field ψ by ψ(x) =
�

d3p

(2π)
3
2
ape
−i(Et−p·x), where E = p2

2m .

I ψ†(x)ψ(x) is the number density operator.

I The effective Hamiltonian can be written as

Heff = H − µN = Hfree + H
(2)
V − µN =

�
d3x

(
1

2m
∇ψ† ·∇ψ − µψ†ψ

)
+

1

2

�
d3xd3yψ†(x)ψ†(y)V (x− y)ψ(y)ψ(x))

where

Ṽ (q) =
1

(2π)3

�
d3xV (x)e−i(q)·x.

I Can derive from an action for a non-relativistic quantum field theory

Leff(ψ) =

�
d3x

[
iψ†∂0ψ −

1

2m
∇ψ† ·∇ψ + µψ†ψ

]
−

1

2

�
d3xd3yψ†(x)ψ†(y)V (x− y)ψ(y)ψ(x)).



Short-distance interaction – Hamiltonian

I Bogoliubov’s model. Set V (x− y) = gδ(x− y).

I Then

Heff =

�
d3x

(
1

2m
∇ψ† ·∇ψ − µψ†ψ +

g

2

(
ψ†ψ

)2
)

=

�
d3x

(
1

2m
∇ψ†(x) ·∇ψ(x) +

g

2

(
µ

g
− ψ†(x)ψ(x)

)2

−µ
2

2g

)
.

I “Mexican Hat” potential for the classical field theory

µ
g − ψ†ψ with φ1 ≡ ψR and φ2 ≡ ψI



Short-distance interaction – Low temperature states
I Coherent states are field eigenstates ψ(x)|state〉 = ψ̃(x)|state〉.

I Only study low-energy high occupation-number states.
I They are most probable at low temperature.

I ψ is an operator, ψ̃ is a complex valued function.
I For readability, we identify the state |state〉 as |ψ̃〉 ≡ |state〉.
I ψ̃ satisfies the E-L equation.
I ψ̃ is a classical field corresponding to ψ. Interchangeable.

I Going forward, identify ψ with ψ̃, etc.

I Define the number-density field ρ(x) = ψ∗(x)ψ(x).

I “Polar coordinates”

ψ(x) =
√
ρ(x)e iθ(x).

I Θ is called the “phase field”. Very important!

I Then the Hamiltonian can be written as

Heff =

�
d3x

{
1

2m

[
(∇ρ) · (∇ρ)

4ρ
+ ρ (∇θ) · (∇θ)

]
+

g

2

(
µ

g
− ρ
)2
}
.



Short-distance interaction – Dispersion relation

I The value of ρ at the energy-minimum, is ρ = µ
g .

I States at low temp have near-minimum energy, so n(= ρ) ≈ µ
g .

I Find ≈ eigenvalues by writing
√
ρ =
√
n + h and expand to order h2.

I Energy eigenstates are parameterized by the momentum p.

Ep =

√
p2

2m

(
p2

2m
+ 2ng

)
.



Landau criterion – Superfluidity at low temperature
18 CHAPTER 2. INTRODUCTION TO SUPERFLUIDS

Figure 2.8: Left: Flowing a fluid past a wall. Right: In the fluid frame, the wall is moving.

excitations of particles out of the ground state wavefunction. In an interacting superfluid,
these are more complex collective excitations. We need only assume that such excitations
exist.

We now imagine flowing the superfluid past a stationary wall at velocity v as in the
right of Fig. 2.8, and we would like to ask whether energy can be dissipated. Another way
to ask this is to ask wehether quasiparticles can be excited.

In order to answer this, the argument entirely boils down to figuring out the energy
momentum relation in the rest frame of the superfluid and then asking whether energy
and momentum can be conserved in a process that creates a quasiparticle excitation.

Thus, let us switch to the fluid rest frame as in the right of Fig. 2.8. We know the
dispersion εfluid(p) = ε(p) of excitations in this (the fluid) frame, and we would like to
determine the dispersion relation in the lab frame. A classical Galilean transformation
gives us

εlab(p) = εfluid(p)− p · v (2.8)

Note that here the quantum number p describes the momentum of the quasiparticle in
the fluid frame.

To justify this Galilean transformation (Eq. 2.8) we should recall that in quantum
mechanics the phase of the wavefunction oscillates as

ψ ∼ e−iεt/~

So here we are claiming that a wavefunction for a particle with momentum p should
oscillate as

ψ(p) ∼ eip·x/~−iεt/~

If we transform into a moving frame we then have

ψ(p) → eip·(x+vt)/~−iεt/~

= eip·x/~−i(ε−p·v)t/~

so we rederive Eq. 2.8.

A more familiar way of understanding this transformation is to think about frequen-
cies ω = ε/~ instead of energies. We then recognize Eq. 2.8 as being the usual Doppler

I Wall friction excites a state with momentum p and energy εfluid(p).

I Galilean transformation from fluid to lab frame.

εlab(p) = εfluid(p)− p · v.

I By conservation of energy, ∆Ewall = −εlab(p).

I Only ∆Ewall ≥ 0 is thermodynamically possible (by stat. mech.)

I So if εlab(p) < 0 the wall heats up and the fluid slows down (dissipation).

I |v| < min
p

ε(p)
p =⇒ εlab(p) > 0; excitation is not possible



Landau criterion – critical velocity

vcrit ≡ min
p

ε(p)
p

vbog
crit =

(
ng
m

) 1
2

2.4. LANDAU CRITERION FOR SUPERFLOW 19

Figure 2.9: A spectrum ε(p) and the corresponding critical velocity for the superfluid.

shift of a frequency in a moving frame18.

So given Eq. 2.8 our question is whether in the lab frame, the energy to create
an excitation is ever negative. If so, excitations are created spontaniously and energy is
dissipated. So when does this happen? Obviously ε − v · p is minimized when v and p
are parallel. Thus we can get negative values of εlab only if

ε(p)

p
< v

Given a dispersion ε(p) (in the rest frame), there is thus a critical velocity

vcrit = min
p

ε(p)

p

(see figure 2.9). Below this critical velocity, there is no way to create a quasiparticle
while conserving energy and momentum. If the fluid flows at velocity greater than the
critical velocity, quasiparticles are spontaneously generated and energy is dissipated from
the superflow.

Note now that if one considers a BEC, the spectrum of excitations is simply p2/(2m)
i.e., just the spectrum of noninteracting particles. The critical velocity is then

vcrit;BEC = min
p

p2/(2m)

p
= 0 (!)

We thus conclude (as Landau realized intuitively!) that a noninteracting BEC does not
superflow!

When we add interacting between the bosons, the spectrum develops an acoustic
wave (we will see this in more detail later!). In that case we have a low energy spectrum

ε(p) = vsound p+ . . .

18This argument is strictly correct for situations where the dispersion is linear — i.e., we have sound
waves or phonons.

Experimental dispersion curve

I Dispersion curve is different for large p.

I Larger p = smaller distances.

I Hypothesis– the dip is caused by a roton.

I Rotons are collective excitations

I Experimental critical v << vcrit
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