Superfluids – Slides I

Bill Celmaster

September 10, 2024

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Outline

[Many Body Physics – Statistical Mechanics](#page-2-0)

[Many Body Physics – Second Quantization](#page-5-0)

[Quantum Field Theory](#page-7-0)

[Short-distance interaction](#page-8-0)

[Landau criterion](#page-11-0)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Stat Mech: The Law of Equal A Priori Probability

The postulate of equal a priori probabilities: An isolated system in equilibrium is equally likely to be in any of its accessible states.

Table: Total of three dice adding up to 7

3 dice add up to a total of 7. 15 possible configurations.

- \triangleright 5 configs where the red system is 1, so $P(1) = 5/15 = 33\%$.
- Similarly, $P(2) = 4/15 = 27\%$.
- Etc. until $P(5) = 1/15 = 7\%$.

KORKAR KERKER SAGA

Stat Mech: Thermal Distribution and Chemical Potential Figure: Total energy is E_{tot} . Total particles $= N_{\text{tot}}$.

- \triangleright System B has many more states than system A.
- \triangleright Thermal equilibrium implies Law of Equal a Priori Probability \implies Thermal distribution
- ▶ A and B are free to exchange energy but not particles \implies $P_A(E) = Ce^{-\beta E}$ (β = inverse temperature).
- ▶ A and B are also free to exchange particles \implies $P_A(E, N) = Ce^{-\beta(E-\mu N)}$ ($\mu =$ chemical po[ten](#page-2-0)[tia](#page-4-0)[l\)](#page-2-0)[.](#page-3-0)

Stat Mech: Low Temp

At low temperature, the probability of A being in the ground state is much larger than in any other state.

PROOF

- \triangleright Call $E \mu N$ the "effective energy" (EE) of the state.
- \triangleright ε_0 = lowest EE (ground state(s)).
- Suppose $\mathcal{E} > \mathcal{E}_0$.
- If β is very large, $e^{-\beta \mathcal{E}} << e^{-\beta \mathcal{E}_0}$.
- ► Low temp \implies high β
- So at low temp, $P(\mathcal{E}_0, N) >> P(\mathcal{E}, N)$.

So in low-temperature many-body physics, focus on the ground state and lowest excited states.

KORKARYKERKER OQO

Second-Quantization: Number Representation

Basis states $|\psi_{\bf p}\rangle = |N_{{\bf p}_1},N_{{\bf p}_2},...\rangle$ $(N_{{\bf p}_i}$ free particles with ${\bf p}_i$).

$$
\blacktriangleright\ |\mathsf{N}_{\mathsf{p}_1},\mathsf{N}_{\mathsf{p}_2},...\rangle\equiv |\mathsf{N}_{\mathsf{p}_1}\rangle\otimes |\mathsf{N}_{\mathsf{p}_2}\rangle\otimes...
$$

 \blacktriangleright For bosons, the particles with equal momenta are indistinguishable.

 \blacktriangleright Creation operators:

$$
|N_{\text{p}}\rangle=\frac{\left(a_{\text{p}}^{\dagger}\right)^{N_{\text{p}}}}{\sqrt{N_{\text{p}}!}}|0\rangle
$$

where $[a_{\mathbf{p}}, a_{\mathbf{p}'}^{\dagger}] = \delta(\mathbf{p} - \mathbf{p'})$.

I More generally, states are indexed by α rather than **p**.

$$
|N_{\alpha}\rangle=\frac{\left(a_{\alpha}^{\dagger}\right)^{N_{\alpha}}}{\sqrt{N_{\alpha}!}}|0\rangle
$$

KID KØD KED KED E 1990

Second-Quantization: Two-body

 \blacktriangleright The free Hamiltonian H_{free} is

$$
H_{\text{free}} = \int d^3 p \frac{\mathbf{p}^2}{2m} a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}}.
$$

where we can show that $a^{\dagger}_{\bf p} a_{\bf p}$ is the number operator $N_{\bf p}$.

 \blacktriangleright General two-body interaction is

$$
H_I^{(2)} = \sum_{a
$$

 \blacktriangleright In the number representation, two particles change states.

$$
H_I^{(2)} = \sum_{\alpha\beta\gamma\delta} \left(H_I^{(2)} \right)_{\alpha\beta\gamma\delta} a_\alpha^\dagger a_\beta^\dagger a_\gamma a_\delta.
$$

 \blacktriangleright For example,

$$
H_V^{(2)} = \frac{1}{2} \int d^3 p_1 d^3 p_2 d^3 q \tilde{V}(\mathbf{q}) a_{\mathbf{p}_1 + \mathbf{q}}^{\dagger} a_{\mathbf{p}_2 - \mathbf{q}}^{\dagger} a_{\mathbf{p}_2} a_{\mathbf{p}_1}.
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

QFT – Equivalence to Second Quantization

$$
\blacktriangleright \text{ Define a field } \psi \text{ by } \psi(x) = \int \frac{d^3 p}{(2\pi)^{\frac{3}{2}}} a_{\mathbf{p}} e^{-i(E\mathbf{r} - \mathbf{p} \cdot \mathbf{x})}, \text{ where } E = \frac{\mathbf{p}^2}{2m}.
$$

 $\blacktriangleright \psi^{\dagger}(\mathsf{x})\psi(\mathsf{x})$ is the number density operator.

 \blacktriangleright The effective Hamiltonian can be written as

$$
H_{\text{eff}} = H - \mu N = H_{\text{free}} + H_V^{(2)} - \mu N = \int d^3x \left(\frac{1}{2m} \nabla \psi^\dagger \cdot \nabla \psi - \mu \psi^\dagger \psi \right) +
$$

$$
\frac{1}{2} \int d^3x d^3y \psi^\dagger(\mathbf{x}) \psi^\dagger(\mathbf{y}) V(\mathbf{x} - \mathbf{y}) \psi(\mathbf{y}) \psi(\mathbf{x}))
$$

where

$$
\tilde{V}(\mathbf{q}) = \frac{1}{(2\pi)^3} \int d^3x V(\mathbf{x}) e^{-i(\mathbf{q}) \cdot \mathbf{x}}.
$$

 \triangleright Can derive from an action for a non-relativistic quantum field theory

$$
\mathcal{L}_{eff}(\psi) = \int d^3x \left[i \psi^{\dagger} \partial_0 \psi - \frac{1}{2m} \nabla \psi^{\dagger} \cdot \nabla \psi + \mu \psi^{\dagger} \psi \right] -
$$

$$
\frac{1}{2} \int d^3x d^3y \psi^{\dagger}(\mathbf{x}) \psi^{\dagger}(\mathbf{y}) V(\mathbf{x} - \mathbf{y}) \psi(\mathbf{y}) \psi(\mathbf{x})).
$$

Short-distance interaction – Hamiltonian

$$
\blacktriangleright \text{ Bogoliubov's model. Set } V(\mathbf{x} - \mathbf{y}) = g\delta(\mathbf{x} - \mathbf{y}).
$$

 \blacktriangleright Then

$$
H_{\text{eff}} = \int d^3x \left(\frac{1}{2m} \nabla \psi^\dagger \cdot \nabla \psi - \mu \psi^\dagger \psi + \frac{g}{2} (\psi^\dagger \psi)^2 \right)
$$

=
$$
\int d^3x \left(\frac{1}{2m} \nabla \psi^\dagger(\mathbf{x}) \cdot \nabla \psi(\mathbf{x}) + \frac{g}{2} \left(\frac{\mu}{g} - \psi^\dagger(\mathbf{x}) \psi(\mathbf{x}) \right)^2 - \frac{\mu^2}{2g} \right).
$$

 \blacktriangleright "Mexican Hat" potential for the classical field theory

$$
\frac{\mu}{g} - \psi^{\dagger} \psi
$$
 with $\phi_1 \equiv \psi_R$ and $\phi_2 \equiv \psi_I$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Short-distance interaction – Low temperature states

I Coherent states are field eigenstates $\psi(\mathbf{x})$ state) = $\tilde{\psi}(\mathbf{x})$ state).

- \triangleright Only study low-energy high occupation-number states.
	- \blacktriangleright They are most probable at low temperature.
- $\blacktriangleright \psi$ is an operator, $\bar{\psi}$ is a complex valued function.
- **►** For readability, we identify the state $|state\rangle$ as $|\tilde{\psi}\rangle \equiv |state\rangle$.
- \triangleright $\tilde{\psi}$ satisfies the E-L equation.
- $\blacktriangleright \tilde{\psi}$ is a classical field corresponding to ψ . Interchangeable.
	- **In Going forward, identify** ψ with $\tilde{\psi}$, etc.
- ► Define the number-density field $\rho(\mathbf{x}) = \psi^*(\mathbf{x})\psi(\mathbf{x})$.
- "Polar coordinates"

$$
\psi(\mathbf{x}) = \sqrt{\rho(\mathbf{x})} e^{i\theta(\mathbf{x})}.
$$

- \triangleright \ominus is called the "phase field". Very important!
- \blacktriangleright Then the Hamiltonian can be written as

$$
H_{\text{eff}} = \int d^3x \left\{ \frac{1}{2m} \left[\frac{(\nabla \rho) \cdot (\nabla \rho)}{4\rho} + \rho (\nabla \theta) \cdot (\nabla \theta) \right] + \frac{g}{2} \left(\frac{\mu}{g} - \rho \right)^2 \right\}.
$$

Short-distance interaction – Dispersion relation

- The value of ρ at the energy-minimum, is $\rho = \frac{\mu}{g}$.
- States at low temp have near-minimum energy, so $n(=\rho) \approx \frac{\mu}{g}$.
- ► Find \approx eigenvalues by writing $\sqrt{\rho} = \sqrt{n} + h$ and expand to order h^2 .
- \blacktriangleright Energy eigenstates are parameterized by the momentum p .

$$
E_{\mathbf{p}} = \sqrt{\frac{p^2}{2m} \left(\frac{p^2}{2m} + 2ng \right)}.
$$

KELK KØLK VELKEN EL 1990

Landau criterion – Superfluidity at low temperature 18 CHAPTER 2. INTRODUCTION TO SUPERFLUIDS AND TO SUPERFLUIDS AND INTERNATIONAL INT

 \blacktriangleright Wall friction excites a state with momentum **p** and energy $\epsilon_{\text{fluid}}(p)$. **In Galilean transformation from fluid to lab frame.**

$$
\epsilon_{\mathsf{lab}}(\rho) = \epsilon_{\mathsf{fluid}}(\rho) - \mathbf{p} \cdot \mathbf{v}.
$$

 \blacktriangleright By conservation of energy, $\Delta E_{\text{wall}} = -\epsilon_{\text{lab}}(p).$

exist.

▶ Only $\Delta E_{\text{wall}} \geq 0$ is thermodynamically possible (by stat. mech.) $\Delta E = 0$ is thermodynamically possible (by state most) So if $\epsilon_{\text{lab}}(p) < 0$ the wall heats up and the fluid slows down (dissipation). \blacktriangleright $|{\sf v}|< \min\limits_{\rho}\frac{\epsilon(\rho)}{\rho}\implies \epsilon_{\sf lab}(\rho)>0;$ excitation is not possible $\min_{\epsilon}(p) \longrightarrow (\epsilon) \times 0$ excitation is not noscible $\frac{\epsilon(\rho)}{\rho}\implies \epsilon_{\mathsf{lab}}(\rho)>0;$ excitation is not possible

Landau criterion – critical velocity

$$
v_{\rm crit} \equiv \min_{p} \frac{\epsilon(p)}{p}
$$

Experimental dispersion curve

- Dispersion curve is different for large p .
- In Larger $p =$ smaller distances.
- \blacktriangleright Hypothesis– the dip is caused by a roton.

KORKARYKERKER OQO

- Rotons are collective excitations
- Experimental critical $v \ll v_{crit}$