Superfluids – Slides II: Vortices

Bill Celmaster

September 14, 2024

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

[What is a Vortex?](#page-2-0)

[Cylindrical Vortex](#page-8-0)

[Rotating cylinder](#page-12-0)

[Ring vortices](#page-17-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

What is a Vortex? – Phase Current

```
► Lowest-energy state has \nabla \theta = 0.
```
So we have to pick a vacuum with fixed $\theta = \theta_0$.

In the vacuum state, the phases at different positions are aligned($\nabla \theta = 0$)

▶ Non-vacuum states have a phase current $J = \frac{1}{m} (\rho \nabla \theta)$.

```
+ + + + + +<br>+ + + + +<br>+ + + + +
```
Non-vacuum states may have a phase current ($\nabla \theta \neq 0$)

KORKAR KERKER SAGA

► Continuity equation (Noether) $\rho = \nabla \cdot \mathbf{j}$.

What is a Vortex? – Phase Discontinuity

- A vortex requires a spacial region of discontinuous / undefined $\nabla \theta$.
	- \blacktriangleright Mathematically is an excluded region or point.
- \blacktriangleright For example, flow around a torus.

Black hole – center missing

 \triangleright Other example, flow around a drain.

Vortex wh[er](#page-3-0)e $\nabla \theta$ blows u[p a](#page-2-0)t [ce](#page-4-0)[nt](#page-2-0)er
 $\begin{array}{rcl}\n\mathbb{C} & \rightarrow & \mathbb{C} \rightarrow & \mathbb{C} \rightarrow & \mathbb{R} \rightarrow$

What is a Vortex? – Mathematical origin

- \triangleright Our delta-function interaction Hamiltonian is only an approximation.
- \blacktriangleright Mathematically, exclude the immediate region around particles.
- \blacktriangleright Replace unknown region with conditions observed experimentally.

KORKARYKERKER POLO

- \blacktriangleright Key example: a *vortex core* (**coming soon**)
- \blacktriangleright Has the effect of modifying the Hilbert space.
	- Extends the spectrum (new excitations).

What is a Vortex? – Circulation

$$
\blacktriangleright \text{ (Noether) } \mathbf{p} = \nabla \theta \text{, so } \mathbf{v} = \frac{1}{m} \nabla \theta.
$$

"Circulation" C is the integral of **v** around a contour.

Full contour starts at $Γ_i$ and ends at $Γ_f$

$$
\mathcal{C} = \oint_{\Gamma} \mathbf{v} \cdot d\mathbf{s} = \frac{1}{m} \oint_{\Gamma} \nabla \theta \cdot \mathbf{s} = \frac{1}{m} \left(\theta(\Gamma_{f}) - \theta(\Gamma_{i}) \right).
$$

 $\blacktriangleright \psi(\mathbf{x}) = e^{i\theta(\mathbf{x})}\sqrt{\rho(\mathbf{x})}$ is single-valued $\implies \theta(\Gamma_f) - \theta(\Gamma_i) = 2\pi n$.

If $\nabla \theta$ is differentiable in S, then Stoke's theorem $\implies n = 0$.

$$
\mathcal{C} = \oint_{\Gamma} \mathbf{v} \cdot d\mathbf{s} = \int_{S} (\nabla \times \mathbf{v}) \cdot d\mathbf{A} = \frac{1}{m} \int_{S} (\nabla \times \nabla \theta) \cdot d\mathbf{A} = 0.
$$

► Circulation is "quantized" with $C = \frac{2\pi}{m}n$

 \blacktriangleright n = 0 if phase is differentiable

- ▶ $n \neq 0$ is a **vortex core** \implies non-differentiable
- > A vortex core is a topological defect AD AB A EXAEX E DAG

What is a Vortex? – Vortex Cores

- **F** Feynman calls them "vortex lines" because width is atomic $(< 1 \text{ Å})$.
- \blacktriangleright A vortex line cannot have free ends. Suppose otherwise.

The contour γ goes around the core, which is a line segment. Pick a bounding surface not crossed by the core.

IDED By assumption, θ is differentiable away from the line.

- ^I ∇ × ^v = 0 on bounding surface.
- ▶ By Stokes theorem, $C = 0 \implies$ segment isn't a vortex core.

 \blacktriangleright There can be core lines closed in a loop or between walls.

What is a Vortex? – Gross-Pitaevskii equation

 \blacktriangleright Recall, our superfluid Lagrangian is

$$
\mathcal{L}=i\psi^*(\mathbf{x})\partial_0\psi(\mathbf{x})-\frac{1}{2m}\boldsymbol{\nabla}\psi^*(\mathbf{x})\cdot\boldsymbol{\nabla}\psi(\mathbf{x})-\frac{g}{2}\left(\frac{\mu}{g}-\psi^*(\mathbf{x})\psi(\mathbf{x})\right)^2-V(\mathbf{x}).
$$

which now includes an external potential $V(x)$ for the walls.

 \blacktriangleright Euler-Lagrange equation is

$$
i\dot{\psi}(t,\mathbf{x}) = \left[\frac{-\nabla^2}{2m} + V(\mathbf{x}) - \mu + g|\psi(\mathbf{x}')|^2\right]\psi(\mathbf{x})
$$

Called Gross-Pitaevskii equation. Generalizes Schrodinger equation.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Cylindrical Vortex – Cylindrical stationary GP equation

 \triangleright Superfluid in a cylinder, with a vortex core through center.

Take V to be 0 inside and ∞ outside the cylinder. Radius R, length $L >> R$.

▶ Stationary solution has $\dot{\psi} = 0$ and also $\frac{\partial H}{\partial \psi} = 0$.

 \triangleright Ground state in Hilbert space with topological defect

- ► Cylindrical coordinates: r, ϕ , z. Ansatz $\psi = \sqrt{\rho}e^{in\phi}$.
- Scaled variables: $\tilde{\rho} = \frac{g}{\rho}$ $\frac{\mathsf{g}}{\mu} \rho$, $\alpha = \sqrt{m \mu} r$. Define $\rho' = \frac{d\rho}{d\alpha}$ $\frac{d\rho}{d\alpha}$, etc.
- \triangleright Stationary GP equation for ansatz with scaled variables

$$
\tilde{\rho}'' + \frac{\tilde{\rho}'}{\alpha} - 2\left(\tilde{\rho}^2 - 1 + \frac{n^2}{2\alpha^2}\right)\tilde{\rho} = 0.
$$

KORKAR KERKER SAGA

Cylindrical Vortex – Stationary Solution \overline{a} + 3 \overline{a} + 3 \overline{a} + 3 \overline{a} \mathcal{L} solved numerically. The solutions for \mathcal{L}

I Numerical solution

The curves asymptote to 1 as $\alpha \rightarrow \infty.$ The variable l is equivalent to n in the text. Density of cylindrical vortices for winding numbers $n = 0$, 1 and 2. The x-axis is the dimensionless distance α .

- \blacktriangleright lim_{α→0} $\tilde{\rho}(\alpha) \propto \alpha^n$.
- \blacktriangleright lim_(large α) $\tilde{\rho}(\alpha) \rightarrow 1 \frac{n^2}{4\alpha^2}$. $rac{n^2}{4\alpha^2}$.
- \blacktriangleright Derivation of the velocity:

.

- From the definition of circulation, $C = 2\pi v r$.
- ► We also showed $C = \frac{1}{m} (\theta(\Gamma_f) \theta(\Gamma_i)) = \frac{2}{m}\pi n$.

$$
\sum_{m} \mathsf{So} \ \mathsf{v} = \frac{n}{\mathsf{r} m}.
$$

 \sum_{m} Note that the velocity diverge[s t](#page-8-0)owards t[he](#page-10-0) [c](#page-8-0)[ore](#page-9-0)[.](#page-10-0) liverges to<mark>v</mark> vards the core.
ਭਾਵਾਬਾਨ ਵਾਲੇ B Ω

Cylindrical Vortex – Cutoff Kinetic Energy

- **In** Large-r approximation: Take integrals from $r = r_c$ to $r = R$.
- ▶ Cutoff kinetic energy = integral from r_c of mass density $\times v^2/2$.
	- **IDED** Change variables from r, ρ to $\alpha, \tilde{\rho}$, and r_c, R to $\bar{r}_c = \sqrt{m\mu}r_c$, $\bar{R} = \sqrt{m\mu}R$, use a cylindrical measure and set $v = \frac{n}{rm}$.

$$
KE_{>r_c} = \frac{2\pi}{mg} L \int_{\bar{r}_c}^{\bar{R}} m\tilde{\rho}(\alpha) \frac{v^2}{2} \alpha d\alpha
$$

$$
= \frac{\pi\mu}{mg} L \int_{\bar{r}_c}^{\bar{R}} \tilde{\rho}(\alpha) \frac{n^2}{\alpha^2} \alpha d\alpha
$$

Use the large- α approximation of $\tilde{\rho}$.

$$
KE_{>r_c} = \frac{\pi Ln^2 \mu}{mg} \int_{\bar{r}_c}^{\bar{R}} \left(1 - \frac{n^2}{4\alpha^2}\right) \frac{1}{\alpha^2} \alpha d\alpha
$$

$$
= \frac{\pi L \rho_0 n^2}{m} \left(\log(R/r_c) + \mathcal{O}\left(\frac{1}{r_c^2}\right) \right),
$$

Cylindrical Vortex – Total Energy

- Total E also requires $KE_{\leq r_c}$ and also PE. We show both are small.
	- is $\tilde{\rho}'' + \frac{\tilde{\rho}'}{\alpha} n^2 \frac{\tilde{\rho}}{\alpha^2}$ \blacktriangleright KE_{$\lt r$ c}
		- Integral near $\alpha = 0$ has $\rho(\alpha) \propto \alpha^n$ so KE $\rightarrow 0$.
		- Integral approaching \bar{r}_c from below is dominated by $log(\bar{r}_c)$.

► So
$$
\overrightarrow{KE}_{\leq r_c}
$$
 ≈ $\mathcal{O}(\frac{L\rho_0}{m} \log(\overline{r}_c))$.

- \blacktriangleright PE is a sum of terms below cutoff and above cutoff
	- \blacktriangleright Above cutoff

$$
\begin{split} PE_{>\bar{r}_c} &= \frac{\pi L \mu}{mg} \int_{\bar{r}_c}^{\bar{R}} \alpha d\alpha \left(1 - \bar{\rho}\right)^2 \\ &\approx \frac{\pi L n^2 \mu}{8mg} \left(\frac{1}{\bar{r}_c^2} - \frac{1}{\bar{R}^2}\right). \end{split}
$$

.

Similar to discussion of $KE_{\leq r_c}$, $PE_{\leq r_c} \approx \mathcal{O}\left(\frac{1}{\vec{r}_c^2}\right)$

$$
\textcolor{red}{\blacktriangleright} \ E \approx \tfrac{\pi L \rho_0 n^2}{m} \log \bigl(\tfrac{R}{r_c} \bigr) \left(1 + \tfrac{\mathcal{O}(\log \bigl(\overline{r}_c \bigr) }{\log \bigl(\tfrac{R}{r_c} \bigr) } + \mathcal{O} \left(\tfrac{1}{\overline{r}_c^2} \right) \right)
$$

Set r_c to atomic length. For $R >> r_c$ results are insensitive to r_c .

Rotating cylinder – Initial state

Rotating can of helium of radius R_0

- \triangleright Solid helium created near 0°K under pressure > 25 atm.
- \blacktriangleright The container is rotated at angular velocity ω .
	- \blacktriangleright Total angular momentum

$$
J = 2\pi L \int_0^{R_0} (m\rho_0 r^2 \omega) \, r dr
$$

$$
= \pi L m \rho_0 \omega \frac{R_0^4}{2}.
$$

$$
E_{R_0}^K = 2\pi L \int_0^{R_0} \left(m\rho_0 \frac{(r\omega)^2}{2} \right) r dr
$$

= $\pi L m \rho_0 \omega^2 \frac{R_0^4}{4}.$

In Then the pressure is released to melt the h[eliu](#page-11-0)[m.](#page-13-0)

Rotating cylinder – Single vortex energy

 \triangleright Conserve angular momentum by picking the winding number n.

$$
\begin{aligned} \text{Using } v = \frac{n}{rm} \\ J_{\text{vortex}} &= 2\pi L \int_0^{R_0} \left(m\rho_0 r \frac{n}{rm} \right) r dr \\ &= \pi L \rho_0 n R_0^2, \end{aligned}
$$

Assume one vortex so set $J_{\text{vortex}} = J$. Then

$$
n=m\omega\frac{R_0^2}{2}.
$$

 \blacktriangleright Vortex energy

$$
E \approx \frac{\pi L \rho_0 n^2}{m} \left(\log(R_0/r_c) + \mathcal{O}(\frac{1}{\tilde{r}_c^2}) \right)
$$

=
$$
\frac{\pi L m \omega^2 \rho_0 R_0^4}{4} \log(R_0/r_c)
$$

=
$$
\log(R_0/r_c) E_R^K.
$$

 \blacktriangleright The single vortex energy is much greater than initial kinetic energy. \triangleright So isn't thermodynamically favored. KID KA KERKER KID KO Rotating cylinder – Vortex array hypothesis

 \blacktriangleright Hypothesize that a vortex array has lower energy.

- Each vortex has winding number $n = 1$.
- \triangleright Vortices are closely spaced.
- \triangleright Vortices have uniform density.

A circular portion of the helium container of radius R, seen from above

\n- $$
n(r)
$$
 = number of vortices within *r* of the core.
\n- $n(r)/n(R_0) = r^2/R_0^2$
\n

 \blacktriangleright Winding number at r is $n(r)$, so $v(r) = \frac{n(r)}{rm} = \left(\frac{n(R_0)}{mR_0^2}\right)$ mR_0^2 $\vert r \vert$

- ► Looks like rigid rotation with $\omega' = \frac{n(R_0)}{mR_0^2}$.
- Explanation: between vortices, velocities tend to cancel.

Rotating cylinder – Vortex array energy

For conservation of angular momentum, $\omega' = \omega$.

- Therefore $n(R_0) = mR_0^2\omega$.
- The line density is $\tilde{n} = \frac{n(R_0)}{\pi R^2}$ $\frac{n(R_0)}{\pi R_0^2} = \frac{m\omega}{\pi}.$
- Distance between cores $\approx \sqrt{n}$.
- If $\omega = 1$ rad/sec, then cores are about 2mm apart.

\blacktriangleright For total energy

- Per vortex use energy formula with $r_c = 4.0\text{\AA}$ and $R = 2$ mm.
- Then multiply by number of vortices $n(R_0) = mR_0^2\omega$.
- \blacktriangleright Total array energy

$$
E_A = (m\omega R_0^2) \frac{\pi L \rho_0}{m} \log(R/r_c)
$$

= $\omega L \pi R_0^2 \rho_0 \log(R/r_c)$
= $14 \rho_0 \omega \pi L R_0^2$.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Rotating cylinder – Ground state

Sompare the array energy E_A to the original solid cylinder $E_{R_0}^K$.

$$
\frac{E_A}{E_R^K} = \frac{14\rho_0 \omega \pi L R_0^2}{\pi L m \rho_0 \omega^2 \frac{R_0^4}{4}} = \frac{64}{m \omega R_0^2}
$$

Set $R_0 = 1$ cm, $\omega = 1$ rad/sec, and $\frac{1}{m} = 0.00015$ cm²/sec.

The mass value is for helium-4, with $\hbar = 1$.

▶ Then $\frac{E_A}{E_R^K} \approx 10^{-2}$. The vortex array is thermodynamically favored.

Vortices in a Bose Einstein Condensate. The dark spots aret[he c](#page-15-0)o[res](#page-17-0) [of](#page-15-0) [the](#page-16-0) [v](#page-17-0)[or](#page-11-0)[tic](#page-12-0)[e](#page-16-0)[s.](#page-17-0)

Ring vortices – Outline of discussion

A smoke ring. The core is the center and all around it, there is a vortex flow that circulates around the core.

- \triangleright We'll treat a ring like an excitation of the fluid ground state.
- \blacktriangleright The most symmetric closed loop is circular.
- Generalize the previous vortex velocity equation $v = \frac{n}{rm}$.
- De Lowest energy excitation has $n = 1$.
- \blacktriangleright Each point on the ring influences **v** at every other point.
- \triangleright We'll show that **v** is perpendicular to the ring.
- \blacktriangleright Then we compute the momentum and energy of the ring.
- From dispersion relation, find critical velocity for superfluidity.
- In This critical velocity is much small than th[e B](#page-16-0)[og](#page-18-0)[ol](#page-16-0)[iub](#page-17-0)[o](#page-18-0)[v](#page-20-0) v_c v_c [.](#page-16-0)

Ring vortex – velocity

- \triangleright Vorticity is related to velocity, as current is related to magnetic field.
- \triangleright By analogy with magnetostatics Biot Savart law,

$$
\mathbf{v}_{\mathsf{P}} = \frac{1}{2m} \int \frac{d\mathbf{l} \times \mathbf{r}}{r^3}
$$

where

- \blacktriangleright the integral ranges over positions on the core
- \blacktriangleright r is the displacement from point P to the core position
- \blacktriangleright dl is the differential line segment at the point

Derivation of vortex ring velocity. P. 115 of Landau and Lifshitz Vol. 9.

 \triangleright \triangleright \triangleright \triangleright is perpendicular to the ring. Compute the integral with cutoff.

$$
\mathbf{v}_{\text{P}} = \left(\frac{1}{8mR_0}\right) 2 \int_{\frac{r_c}{R_0}}^{\pi} \frac{d\theta}{\sin \frac{1}{2} \theta} \approx \frac{1}{2mR_0} \log \frac{R_0}{r_c}.
$$

 Ω

Ring vortex – energy and momentum

Recall energy of a linear vortex of length L and max radius R

$$
E \approx \frac{\pi L \rho_0 n^2}{m} \log(\frac{R}{r_c})
$$

 \blacktriangleright Picture smoke ring.

Length is $L = 2\pi R_0$ **.**

▶ Vortex lines are 0 at center, so max radius $R \approx R_0$.

 \blacktriangleright n = 1 is lowest-energy excitation

 \blacktriangleright Substitute for L, n and R to get ring vortex energy.

$$
E \approx \frac{2\pi^2 R_0 \rho_0}{m} \log(\frac{R_0}{r_c})
$$

$$
\blacktriangleright \frac{dE}{dp} = v \implies dp = \frac{dE}{v} \implies dp \approx (4\pi^2 R_0 \rho_0) dR_0
$$

Integration $\implies p \approx 2\pi^2 R_0^2 \rho_0$

 \triangleright Dispersion relation is

$$
E \approx \frac{\pi\sqrt{\rho_0}}{\sqrt{2}m} \sqrt{p} \log \left(\frac{p}{2\pi^2 \rho_0 r_c^2} \right) \qquad (1)
$$

Ring vortex – critical velocity

Dispersion in thin aperture

$$
\blacktriangleright \ \ v_{\rm crit} = \min_{p} \frac{E(p)}{p}.
$$

$$
\blacktriangleright
$$
 For large p , $\frac{E(p)}{p} \to 0$.

► But $R_0 < D$ where D is radius of the enclosure, so $p < 2\pi^2 D^2 \rho_0$.

\n- Since
$$
p \approx 2\pi^2 R_0^2 \rho_0
$$
, then $p < 2\pi^2 D^2 \rho_0$.
\n- So $v_{\text{crit}} = \frac{\hbar}{m} \log \frac{D}{r_c}$. (*reinstate* \hbar previously set to 1).
\n

▶ Use Feynman values: $\frac{\hbar}{m} = 1.5 \times 10^{-4}$ cm/s, $D = 10^{-5}$ cm, $r_c = 4\AA$

- ► Leads to $v_{\text{crit}} \approx 80 \text{ cm/sec}$.
- Experimental value is about 20 cm/sec .
- \blacktriangleright Much closer than Bogoliubov prediction.