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What is a Vortex? — Phase Current

» Lowest-energy state has V6§ = 0.

» So we have to pick a vacuum with fixed 6 = 0.
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In the vacuum state, the phases at different positions are aligned( V6 =0 )

» Non-vacuum states have a phase current j = % (pV0).
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Non-vacuum states may have a phase current ( VO # 0 )

> Continuity equation (Noether) p =V -j.



What is a Vortex? — Phase Discontinuity

> A vortex requires a spacial region of discontinuous / undefined V6.
» Mathematically is an excluded region or point.

» For example, flow around a torus.

Black hole — center missing

» Other example, flow around a drain.

Vortex where V6 blows up at center



What is a Vortex? — Mathematical origin

» Our delta-function interaction Hamiltonian is only an approximation.
» Mathematically, exclude the immediate region around particles.
» Replace unknown region with conditions observed experimentally.
> Key example: a vortex core (coming soon)
» Has the effect of modifying the Hilbert space.

> Extends the spectrum (new excitations).



What is a Vortex? — Circulation
> (Noether) p = V6, sov = 1Vo.

» “Circulation” C is the integral of v around a contour.

Full contour starts at I'; and ends at ¢
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> oh(x) = ™) /p(x) is single-valued = O(¢) — O(T;) = 27n.
» If V0 is differentiable in S, then Stoke's theorem =— n = 0.

cz§£v-ds=/(va).dA=l/(vae).dA:o.
r S mJs

» Circulation is “quantized” with C = %n
» n =0 if phase is differentiable
> n# 0 is a vortex core = non-differentiable
> A vortex core is a topological defect



What is a Vortex? — Vortex Cores

» Feynman calls them “vortex lines” because width is atomic (< 1 A).

> A vortex line cannot have free ends. Suppose otherwise.
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The contour « goes around the core, which is a line segment. Pick a bounding surface
not crossed by the core.

» By assumption, @ is differentiable away from the line.
> V x v = 0 on bounding surface.
» By Stokes theorem, C =0 = segment isn't a vortex core.

» There can be core lines closed in a loop or between walls.
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What is a Vortex? — Gross-Pitaevskii equation

» Recall, our superfluid Lagrangian is
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which now includes an external potential V(x) for the walls.
» Euler-Lagrange equation is
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Called Gross-Pitaevskii equation. Generalizes Schrodinger equation.



Cylindrical Vortex — Cylindrical stationary GP equation

» Superfluid in a cylinder, with a vortex core through center.

i
Take V to be 0 inside and oo outside the cylinder. Radius R, length L >> R.

> Stationary solution has ¥ = 0 and also gT’Z =0.

» Ground state in Hilbert space with topological defect
» Cylindrical coordinates: r, ¢, z. Ansatz ¢ = \/ﬁei”¢.
» Scaled variables: j = %p, a = /mpur. Define p/ = %, etc.

» Stationary GP equation for ansatz with scaled variables
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Cylindrical Vortex — Stationary Solution

» Numerical solution

Density of cylindrical vortices for winding numbers n = 0, 1 and 2. The x-axis is the dimensionless distance .

The curves asymptote to 1 as &« — co. The variable [ is equivalent to n in the text.

» limgy—0 p(a) x ™.

> 1iM(large o) () = 1 — 5.
» Derivation of the velocity:
» From the definition of circulation, C = 2mvr.
> We also showed C = L (6(T¢) — 6(I)) = Z7n.
> Sov=.
» Note that the velocity diverges towards the core.



Cylindrical Vortex — Cutoff Kinetic Energy

» Large-r approximation: Take integrals from r =r. to r = R.
» Cutoff kinetic energy = integral from r. of mass density xv?/2.

» Change variables from r,p to o, p, and r., R to 7ic = /mpure,
R = \/muR, use a cylindrical measure and set v = ..
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» Use the large-a approximation of p.
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Cylindrical Vortex — Total Energy
» Total E also requires KE<,, and also PE. We show both are small.

> Total KE (cylindrical coords.) is 5" + % —n*5
> KE<r.
> Integral near & = 0 has p(a) < a” so KE — 0.
> Integral approaching 7. from below is dominated by log(7;).

> So KE<, =~ O(L—f;" log(72)).
» PE is a sum of terms below cutoff and above cutoff
> Above cutoff
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» Similar to discussion of KE<, , PE<, ~ O (
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» Set r. to atomic length. For R >> r. results are insensitive to r..



Rotating cylinder — Initial state

Rotating can of helium of radius Ry

» Solid helium created near 0°K under pressure > 25 atm.

» The container is rotated at angular velocity w.
» Total angular momentum
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J= 27TL/ (mp0r2w) rdr
0

R4
= 7erpow70.

» Kinetic energy of rigid motion (doesn’t include binding energy)
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» Then the pressure is released to melt the helium.



Rotating cylinder — Single vortex energy

» Conserve angular momentum by picking the winding number n.

H . _hn
» Using v = -
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Jvortex = 27TL/ (mpor—) rdr
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= mLponRy,

P> Assume one vortex so set Jortex = J. Then

RS
n= mw7.

> Vortex energy
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» The single vortex energy is much greater than initial kinetic energy.

» So isn't thermodynamically favored.



Rotating cylinder — Vortex array hypothesis

P> Hypothesize that a vortex array has lower energy.
» Each vortex has winding number n = 1.
» Vortices are closely spaced.
» Vortices have uniform density.

A circular portion of the helium container of radius R, seen from above
» n(r) = number of vortices within r of the core.
2 2
> n(r)/n(Ro) = r"/Rs

» Winding number at r is n(r), so v(r) = L,(,;) = (%&RR%)) r.
0
n(Ro)
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» Explanation: between vortices, velocities tend to cancel.

> Looks like rigid rotation with w’ =




Rotating cylinder — Vortex array energy

» For conservation of angular momentum, w’ = w.

> Therefore n(Ry) = mR3w.
n(Ry) _ mw
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» The line density is i =

» Distance between cores ~~ v/A.
» If w = 1rad/sec, then cores are about 2mm apart.

» For total energy

» Per vortex use energy formula with r. = 4.0A and R = 2mm.
» Then multiply by number of vortices n(Ry) = mR3w.
» Total array energy
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Ex = (mwR?) log(R/rc)
= wlTR3polog(R/r.)

= 14p0w7rLR§.



Rotating cylinder — Ground state

» Compare the array energy E, to the original solid cylinder E,’?{O.

EA - 14p0w7rLR§

EX wme0w2RTg
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» Set Ry = 1cm, w = 1rad/sec, and % = 0.00015 cm? /sec.
» The mass value is for helium-4, with i = 1.

» Then l% ~ 1072, The vortex array is thermodynamically favored.

Vortices in a Bose Einstein Condensate. The dark spots are the cores of the vortices.




Ring vortices — Outline of discussion

A smoke ring. The core is the center and all around it, there is a vortex flow that circulates around the core.

> We'll treat a ring like an excitation of the fluid ground state.
The most symmetric closed loop is circular.

Generalize the previous vortex velocity equation v = -
Lowest energy excitation has n = 1.

Each point on the ring influences v at every other point.
We'll show that v is perpendicular to the ring.

Then we compute the momentum and energy of the ring.

From dispersion relation, find critical velocity for superfluidity.
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This critical velocity is much small than the Bogoliubov v..



Ring vortex — velocity
» Vorticity is related to velocity, as current is related to magnetic field.

» By analogy with magnetostatics Biot Savart law,
1 dl xr
- 2m r3

vp

where

> the integral ranges over positions on the core
» ris the displacement from point P to the core position
» dl is the differential line segment at the point

dl = Rydf, R=2R;sinif, |dIXR|= Rsinid.dl,
P
A

Derivation of vortex ring velocity. P. 115 of Landau and Lifshitz Vol. 9.

» vp is perpendicular to the ring. Compute the integral with cutoff.
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Ring vortex — energy and momentum

» Recall energy of a linear vortex of length L and max radius R

E ~ log(—)
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» Picture smoke ring.

> Length is L =27 Ry.
P Vortex lines are 0 at center, so max radius R = Rp.
> n =1 is lowest-energy excitation

» Substitute for L, n and R to get ring vortex energy.
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Dispersion relation is




Ring vortex — critical velocity

» Dispersion in thin aperture
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Vortex ring dispersion curve

> vc,;t:minM.
p P

» For large p, % — 0.

» But Ry < D where D is radius of the enclosure, so p < 2w2D?py.

» Since p ~ 2m2R2pp, then p < 272D2py.
» SO Veit = % log rQ. (reinstate h previously set to 1)

» Use Feynman values: % =1.5x10"%m/s, D = 10~%cm, r. = 4A

» Leads to vgir = 80cm/sec.
> Experimental value is about 20 cm/sec.
» Much closer than Bogoliubov prediction.



	What is a Vortex?
	Cylindrical Vortex
	Rotating cylinder
	Ring vortices

