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1 Review of Bogoliubov dispersion

1.1 Review of the Bogoliubov method

We began our treatment of superfluidity with an approach due to Bogoliubov,
based on second quantization of a many-body system. In that approach, we
represented the Hamiltonian as a symmetrized sum of terms involving anni-
hilation and creation operators acting on single-particle states. The Hamil-
tonian describes a system with very short-range interactions (we choose a
delta-function interaction). We then converted to an occupation-number de-
scription of the system, where there is a separate annihilation and creation
operators for each momentum, and those operators change the occupation
number of the occupation state for that momentum.

H ≈
∑

p

p2

2m
a†pap +

g

2V
∑

kpq

a†k+qa
†
p−qapak, (1)

This Hamiltonian isn’t obviously diagonalizable, but Bogoliubov came up
with a useful approximation (his so-called “hunting license”) that can be
applied for a system whose ground state has a very high population number
(as would be the case near a temperature of absolute zero.) He ends up with

H ≈
∑

p 6=0

(
p2

2m
+ ng

)
a†pap +

1

2

∑

p6=0

ng
(
a†pa

†
-p + apa-p

)
, (2)

where n = N
V is the number-density.
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Since the terms are all quadratic, it’s possible to do a straightforward diag-
onalization and we find that

E(p) =

√
p2

2m

(
p2

2m
+

2Ng

V

)
. (3)

In this figure, the minimum slope of the curve (also known as the critical
velocity) occurs at the origin and has the value

√
ng
m

.

For a short-range potential V(k)) which is more general than the delta-
function, we can get a more general dispersion curve, for example2.4. LANDAU CRITERION FOR SUPERFLOW 19

Figure 2.9: A spectrum ε(p) and the corresponding critical velocity for the superfluid.

shift of a frequency in a moving frame18.

So given Eq. 2.8 our question is whether in the lab frame, the energy to create
an excitation is ever negative. If so, excitations are created spontaniously and energy is
dissipated. So when does this happen? Obviously ε − v · p is minimized when v and p
are parallel. Thus we can get negative values of εlab only if

ε(p)

p
< v

Given a dispersion ε(p) (in the rest frame), there is thus a critical velocity

vcrit = min
p

ε(p)

p

(see figure 2.9). Below this critical velocity, there is no way to create a quasiparticle
while conserving energy and momentum. If the fluid flows at velocity greater than the
critical velocity, quasiparticles are spontaneously generated and energy is dissipated from
the superflow.

Note now that if one considers a BEC, the spectrum of excitations is simply p2/(2m)
i.e., just the spectrum of noninteracting particles. The critical velocity is then

vcrit;BEC = min
p

p2/(2m)

p
= 0 (!)

We thus conclude (as Landau realized intuitively!) that a noninteracting BEC does not
superflow!

When we add interacting between the bosons, the spectrum develops an acoustic
wave (we will see this in more detail later!). In that case we have a low energy spectrum

ε(p) = vsound p+ . . .

18This argument is strictly correct for situations where the dispersion is linear — i.e., we have sound
waves or phonons.
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1.2 Review of the field theory method

The second-quantization technique can be rewritten using the formalism of
field theory. We had shown

H − µ
�
d3xφ†(x)φ(x) =

�
d3x

(
1

2m
∇φ†(x) ·∇φ(x) +

g

2

(
φ†(x)φ(x)

)2 − µφ†(x)φ(x)

)

=

�
d3x

(
1

2m
∇φ†(x) ·∇φ(x) +

g

2

(
µ

g
− φ†(x)φ(x)

)2

− µ2

2g

)
.

(4)
where µ was introduced as a Lagrange multiplier for a statistical partition
function describing a system that can exchange particles with a reservoir.
Dropping the constant term, we have

H ′ =

�
d3x

(
1

2m
∇φ†(x) ·∇φ(x) +

g

2

(
µ

g
− φ†(x)φ(x)

)2
)
. (5)

We see that the classical theory has a minimum for φ0 =
√

µ
g
eiθ, where θ is a

constant that can be chosen arbitrarily. We rewrite φ = φ0 +φ1 then expand
H ′ in φ1 through quadratic order. If we set θ = 0, then we obtain

H ′ ≈
�
d3x

(
1

2m
∇φ†1(x) ·∇φ1(x) + µ

�
d3x′φ∗1(x)φ1(x) +

µ

2

�
d3x

(
φ2

1(x) + φ∗21 (x)
))

.

(6)
Note that by picking θ = 0, we have chosen a direction in θ-space and there-
fore have broken a symmetry that was manifest in the original Lagrangian
(φ→ φeiθ).

Since H ′ is quadratic, it can easily be diagonalized in terms of eigenstates
parametrized by k with the resulting dispersion shown in Eq. (3).

Arguably, this entire procedure is classical. We haven’t integrated over path
space, nor have we introduced operators. However, as we’ve demonstrated
previously, the classical results can be carried over to the quantum theory
provided we restrict our attention to many-body states of low momentum
at low temperature, i.e., states of large occupation number. The quantum
ground state (i.e., minimum energy eigenstate) has been shown to be the
coherent state φ0.

It’s relatively easy to compare the Bogoliubov and field methods, and see
the relationship between them. In fact, there is a fairly rigorous equivalence
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between the methods. However, the field method has both notational and
conceptual advantages. I find that particularly true as we turn to some of
the topological features of superfluidity.

2 The superfluid Lagrangian and currents

2.1 Caveat emptor

Going forward, I’m going to be a bit sloppy in distinguishing clas-
sical and quantum physics. Although Lancaster isn’t clear about
this, the remaining discussion (and much of the previous discus-
sion) of superfluids can all be done within the context of classical
field theory. As explained previously, the quantum-classical equivalence is
permitted here by identifying φ in the designation of the coherent state |φ〉,
with the classical field φ, provided that we identify the operator Hamiltonian
function H(φ̂) with the classical Hamiltonian function H(φ). Note that I
may use the notation φ† intermittently with the notation φ∗. This first of
these refers to the adjoint of an operator, and the second to the complex
conjugate of a number.

While I’m at it, I’ve just noticed that for most of these notes on many-body
physics and superfluids, I’ve suppressed the time-coordinate. You might not
have noticed, since the notation x is used in field theory to indicate the
space-time 4-vector. However, I’ve used the notation x. The boldface type
generally denotes spacial coordinates. My usage follows Lancaster and many
other sources, and is typical of non-relativistic physics. However, even in
non-relativistic physics there is time-dependence which, in many cases, isn’t
explicitly shown here.

2.2 Polar coordinates – phase and density fields

Elsewhere (see notes called “Condensed Matter I”), we’ve discussed the non-
relativistic limit of field theories, and we’ve obtained both the Hamiltonian
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discussed above, and the Lagrangian (see notes called “Superfluids II”)

L = iφ†(x)∂0φ(x)−H ′

= iφ†(x)∂0φ(x)− 1

2m
∇φ†(x) ·∇φ(x)− g

2

(
µ

g
− φ†(x)φ(x)

)2

.
(7)

It turns out to be convenient to write the field in polar coordinates. The
angular coordinate – which we’ll call the phase field is of fundamental
importance in discussing superfluids, since the key properties of superfluids
have to do with the angular current which we will define shortly. We write

φ(x) =
√
ρ(x)eiθ(x), (8)

where ρ(x) = φ†(x)φ(x) which we’ve previously identified as the number-
density operator (classically, we’d call this the matter density). We call ρ
the density field

Then

L = −ρ∂0θ −
1

2m

[
1

4ρ
(∇ρ)2 + ρ(∇θ)2

]
− g

2

(
µ

g
− ρ
)2

. (9)

We have dropped a term 1
2
∂0ρ since this is a total derivative of a function

presumed to vanish at ±∞. This is the same as Lancaster Eq. (42.24),
although Lancaster has noted that in the ground state, the number density,
n0 is µ

g
.

2.2.1 The spectrum – rederiving Bogoliubov’s dispersion relation

It should be possible to start with field theory and obtain the Bogoliubov
dispersion relation.Surprisingly, I haven’t been able to google any work that
does this, although I’m pretty sure it must be a relatively well-known pro-
cedure. I’ve come up with something that I’ll present here. But it’s worth
noting that today (July 28) when I queried ChatGPT, I got a very nice
derivation, different from mine. The derivation has a few logic errors but I’m
pretty sure it can be corrected to give the right answer. My query was “show
how to obtain the Bogoliubov dispersion relation starting from field theory”.

My approach (not ChatGPT’s) closely follows Lancaster starting the middle
of page 376. Let

√
ρ(x) =

√
n + h where n = N/V . Then expand the

Lagrangian Eq. (9) up to quadratic order in h.

L = − 1

2m
(∇h)2 − 2gnh2 −

(
2
√
n∂0Θ

)
h− n

2m
(∇Θ)2 + ... (10)
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Since this Lagrangian is quadratic in the fields, the theory can be solved
exactly (to this order in n). Lancaster, in example 42.4, shows a trick for
eliminating the h fields and obtaining an effective Lagrangian in terms of the
Θ fields:

Leff = n∂0Θ
1

2gn− 1
2m
∇2

∂0Θ− n

2m
(∇Θ)2 + ... (11)

The denominator term 2gn − 1
2m
∇2 can be expanded in momentum space

(i.e., transform the phase field to momentum space, then ∇2 → p2. Then
expand for small p or alternatively large n:

Leff =
1

2g
(∂0Θ)2 − n

2m
(∇Θ)2 +

1

8mg2n
∂0Θ∇2∂0Θ + ... (12)

This resembles Lancaster Eq. (42.30) but includes one more term.

Apply the Euler-Lagrange equation

∂0
∂Leff

∂ (∂0φ)
+∇ · ∂Leff

∂ (∇φ)
= 0. (13)

to obtain
1

g
∂2

0Θ− n

m
∇2Θ +

1

4mg2n
∂0∇2∂0Θ = 0. (14)

Hypothesize a solution of the form

Θ = Ce−i(Et−p·x). (15)

Our differential equation becomes

− 1

g
E2 +

n

m
p2 +

1

4mg2n
E2p2 = 0. (16)

Then solve for E in terms of p.

E =

√
ng
m
p2

1− 1
4mgnp2

≈
√
ng

m
p2

(
1 +

p2

4mgn

)

=

√
p2

2m

(
p2

2m
+ 2ng

)
.

(17)

The second line is an expansion in 1
n
, and the third line is the Bogoliubov

dispersion relation.
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2.3 Noether’s theorem and currents

In the notes ”Topics in Field Theory”, we’ve also how to obtain currents
and conserved charges using Noether’s theorem. Let’s apply this to various
symmetries of our problem.

2.3.1 U(1) symmetry

Noether’s theorem applies even though we may choose to rewrite the fields
by expanding around one of the vacua (thereby breaking the manifest sym-
metry). The superfluid Lagrangian, Eq. (9) has the U(1) symmetry θ →
θα = θ + α. Define Dθ = dθα

dα

∣∣∣
α=0

. Then we have Dθ = 1. The Noether

current is

JµU(1) = Dθ · ∂L
∂ (∂µθ)

=

{
−ρ if µ = 0

− ρ
m
∂iθ if µ = i.

(18)

Note that in the ground state, ρ is non-zero (i.e, its expectation value in
the ground state) because of symmetry breaking so the current is non-zero.
However, if the Hamiltonian had looked a bit different (for example, suppose
g were negative), the ground state might have been chosen to preserve the
symmetry – namely ρ = 0. In that case, the ground-state current would have
been 0.

By Noether’s theorem, ∂µJ
µ
U(1) = 0, so

ρ̇ =
1

m
∇ · (ρ∇θ) . (19)

Following Superfluid States of Matter, by Svistunov, Babaev and Prokof’ev
(SBP) https://people.umass.edu/bvs/Book.pdf, we set

j ≡ 1

m
(ρ∇θ) (20)

and therefore we have ρ̇ = ∇ · j. This is a critical equation because, by
analogy with a similar equation in hydrodynamics, it describes a continuity
equation for matter (particles).

Lancaster, following a slightly different path arrives at a related equation
(you would need to take an approximation where the density is close to
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the ground state density, and you’d also need to invoke the Euler-Lagrange
equation for the density).

The phase is often referred to as an order parameter, since has long-range
correlations (as a result of the broken symmetry).

Figure 1: (a) Uniform phase angle in the ground state (b) In a slightly
excited state, the density is approximately constant and the current is pro-
portional to the gradient of the phase ∇θ

Because of the continuity equation, we see that the phase gradient shows the
flow of matter in the fluid.

2.3.2 Time translation symmetry

The Noether theorem can also be applied to the symmetry resulting from
t→ t+α. See section 10.3 in Lancaster. We obtain the Noether current and
from that, we derive the conserved “charge” which, for time translation, is the
Hamiltonian. (Note that in principle, the Hamiltonian defined in this way,
might be different than the Hamiltonian defined as in Hamiltonian mechanics.
Nevertheless, they are related.)

H =

�
d3x

[
∂L

∂ (∂tθ)
∂tθ − L

]

=

�
d3x

{
1

2m

[
(∇ρ) · (∇ρ)

4ρ
+ ρ (∇θ) · (∇θ)

]
+
g

2

(
µ

g
− ρ
)2
}
.

(21)
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2.3.3 Space translation symmetry

Again, refer to section 10.3 in Lancaster. The conserved ”charge” for space
translations, is the momentum.

P i =

�
d3x

[
∂L

∂ (∂0θ)
∂iθ

]

=

�
d3xρ∂iθ.

(22)

Notice from Eq. (20) that the momentum density is the mass
density times the U(1) current j.

2.4 Superfluid velocity and other fields

Since classical momentum of a fluid is total mass times velocity, and since
(Eq.(22)) the superfluid momentum density is particle-mass times the current
j, it seems reasonable to conclude that the fluid velocity v is just v = 1

ρ
j =

1
m
∇θ.

There are more formal ways of arriving at that conclusion. These rely on the
observation that the superfluid velocity should be the velocity of a moving
(relative to the walls) frame of reference in which the fluid is at rest. Several
references which discuss this are https://physics.stackexchange.com/questions/292152/galilean-
transformation-in-non-relativistic-quantum-mechanics and Fonda & Ghirardi’s
Symmetry Principles in Quantum Physics, Sec. 2.5, pgs.83-89:. scribd.com/doc/30539019/,
and SBP page 50. (See Stefanovich’s derivation of Eq. 1.801 https://billcelmaster.com/wp-
content/uploads/2024/06/Stefanovich-Galilean-transformation.pdf

SBP also derive the Galilean transformations in changing to the “primed”
frame moving at velocity v0 relative to a unprimed frame.

j′ = j + ρv0

P′ = P +Nmv0

E ′ = E + P · v0 +Nm
v2

0

2

(23)

1For wavefunctions rather than fields
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3 Vortices

We now begin a section which is way out of my comfort zone. I think it
would help if one had a good intuition about magnetostatics, especially about
the interactions of magnetic field carried by multiple wires. It would also
help if one had a good intuition about hydrodynamics, since vortices show
up in the classical theory and in particular, are a hallmark of turbulence.
Whatever intuition I might once have had from these topics (maybe none?)
is gone now – except for recognizing that water draining in a bathtub tends
to form a vortex! I also believe that there is an area of mathematics which
is directly applicable to the subject matter in the context of solutions to
differential equations. Again, if I ever knew this, I’ve forgotten it, although
in this instance I feel reasonably comfortable with the specific mathematical
requirements for dealing with vortices in superfluids.

For a treatment of vortices in superfluids, using pictures and intuitions, see
Feynman Statistical Mechanics: A Set of Lectures towards the end of chap-
ter 11. Most of my notes will follow material from SBP, although from time
to time I’ll take inspiration from Lancaster section 42.4.2 I’ve also found it
useful to refer to the Landau and Lifshitz book Statistical Physics Volume 9
Part II (by Lifshitz and Pitaevskii) around page 112.

3.1 Why do we need to treat vortices separately from
quasiparticle excitations?

Since we supposedly have a Lagrangian/Hamiltonian for the superfluid many-
body system, why aren’t vortices already part of that theory? As far as I
can tell, the answer partly has to do with experimental observations. Here’s
what I think: a variety of theoretical constructs were explored, both to ex-
plain some features of rotating superfluids and also to model vortex be-
havior long known in hydrodynamics physics. What emerged from all this
was an acknowledgment of the incompleteness of the superfluid Lagrangian.
Clearly no attempt had been made to include, in the Lagrangian, interaction

2I’m not entirely convinced that Lancaster’s treatment is completely correct. Like
many other treatments, Lancaster builds his arguments based on some simplifications and
analogies. I think the subject matter suffers from great complexity, and that the physics
has progressed by a sequence of credible approximations. To my taste, I would have liked a
treatment which is explicit about the details of what is being approximated and what isn’t,
but maybe it’s assumed that I have a richer understanding of fluids or electromagnetism.
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terms describing phenomena occurring on the scale of atomic sizes. One phe-
nomenological way to model such phenomena, is to hypothesize that lines,
which we’ll call vortex lines or vortex cores, can form with atom-size radii,
such that in those cores, the particle density is 0 (and as we’ll see later, the
flow velocity is singular on those vortex lines).

There are some immediate consequences – to be demonstrated over the course
of the next few sections – of such an assumption.

� The vortex lines either form closed loops or else their ends terminate
on the walls containing the superfluid.

� The vortex lines become boundary conditions (ρ = 0) for solutions of
the Euler-Lagrange equations. In the vicinity of each vortex line, the
fluid becomes a vortex.

� Just as we can treat the quasiparticle energy-eigenstates as excitations
of the ground state, we can also treat the vortices as excitations of
the ground state, with energies that are calculated by evaluating the
Hamiltonian in the presence of these vortices.

� The vortices can be described as excitations of a Hamiltonian sys-
tem. That is, vortices can be regarded as microstates orthogonal
to the pressure-states of the Bogoliubov theory. They can also be
treated using the rules of statistical mechanics based on equal a pri-
ori probability of a system finding itself in any one of its vortex mi-
crostates.3 See Onsager, ”Statistical Hydrodynamics”. A more mod-
ern review of this topic appears in the Ph.D. thesis by Thomas Ash-
bee.https://discovery.ucl.ac.uk/id/eprint/1427632/1/TLA thesis final.pdf

3.2 Vortex cores

In general, the fluid vorticity w is defined as

w = ∇× v. (24)

3To be honest, I haven’t managed to put together a set of references that address, to
my satisfaction, the details of this kind of thing. Certainly, the standard literature treats
the subject matter as though vortices are quite separate from quasi-particles. I think some
of this approach originates with classical hydrodynamics.
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Now recall that v = 1
m
∇θ. This has the consequence that w = 0 since the

curl of a gradient is 0. HOWEVER, THAT IS ONLY TRUE WHEN
θ AND ITS GRADIENT ARE DEFINED!! When a fluid has w = 0,
it is called irrotational. We’ll return to this critical issue, but first, note from
Stoke’s theorem that�

Γ

v · ds =

�
S

(∇× v) · dA =

�
S

w · dA. (25)

Γ is a contour and S is a surface bounded by the contour, with ds a vector
line element of the contour, and dA a normal area element of the surface.
If θ and its gradient are defined, then the vorticity w is 0 and the contour
integral of v is 0. We call that contour integral the circulation.

In summary, we seem to have demonstrated that an irrotational fluid has
no regions where the circulation is nonzero. Yet, it has been known experi-
mentally for a long time, that vortices (which have nonzero circulation) can
appear in apparently-irrotational fluids. This can be explained by hypothe-
sizing that in the fluid, there are lines or “cylinders” (which we call cores), of
either undefined or non-zero vorticity. We call these “vortex lines” or “vortex
cores”.

Mathematically the situation for superfluids is reasonably straightforward.
Recall that the angle θ is the phase angle of the wave function φ, namely
φ = eiθ|φ|. Even though the wavefunction can be defined everywhere, the
same can’t be said of θ. When φ = 0 (and therefore ρ = 0), the angle becomes
ill-defined. This is a bit reminiscent of the change from rectilinear to polar
coordinates, where one of the spacial points must be excluded. Consider a
situation (Fig. 2) where we have a fluid with a hole in it. We’ll refer to this
hole as “the core”.

Figure 2: Fluid showing (interior circle) cross-section of a cylindrical vortex
core
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Surrounding the core is some fluid moving counterclockwise with speed v.
Let Γ be a circular contour of radius r surrounding the core Since v = 1

m
∇θ,

and since the single-valuedness of φ requires that when θ varies along the
contour, it must travel an integer multiple of 2π, we can write

�
Γ

v · ds =
1

m

� 2lπ

0

dθ =
2lπ

m
. (26)

The number l is called the winding number. We see that the contour integral
is effectively quantized, although we’ve used a classical rather than quantum-
mechanical argument.

How can the integral be nonzero? We previously had concluded from Stokes’
theorem that the line integral had to be 0 on account of the vorticity being
0 on a bounding surface. However, as previously noted, the theorem is only
applicable when θ is defined everywhere on the bounding surface – that is,
when ρ 6= 0 everywhere on the interior of Γ. In our example, ρ = 0 in the core,
and therefore θ is undefined in the core. If the core crosses every bounding
surface, then Stokes’ theorem doesn’t apply. This condition requires that the
core either forms a loop or else its two ends must terminate on the boundaries
(the walls of the container). To see this, suppose the core is simply a line
segment (or rather, a cylindrical segment) as in Fig. 3.

Γ

Figure 3: The contour γ goes around the core, which is a line segment.
However, we can pick a bounding surface which is not crossed by the core.

Since the core doesn’t intersect the bounding surface in this example, φ is
defined everywhere on the surface thus the vorticity is 0 on the surface and
the line integral has to be 0.
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Where do vortex cores come from? I don’t happen to have a good answer to
that question, although Feynman (pages 339-342) provides a motivation that
I haven’t bothered to sort through. Vortex cores are thin cylinders where the
particle density becomes 0. On page 336, Feynman argues based on surface-
tension, that the radius of a core is approximately 0.4 Å, thus negligible, so
he refers to the cores as “vortex lines”.

3.3 Solving the Gross-Pitaeskii equation for a cylindri-
cal vortex

We have previously run into the Gross-Pitaeskii (GP) equation as the Euler-
Lagrange equation of the non-relativistic limit of a super-cooled fluid with a
delta-function interaction potential. In general, one also adds to the potential
and external potential of the form V (x) (which one obtains by adding that
potential term to the Lagrangian). The GP equation is a generalization of
the Schrodinger equation.

Of particular interest is the time-independent (aka stationary) solution of
the GP equation. This can be shown to be a solution for the minimum of
H ′ as a function of the field and therefore a candidate for the ground-state
(recall the correspondence between the coherent state and the field). The
GP equation we’ll study is

[−∇2

2m
+ V (x)− µ(x) + g|φ0(x′)|2

]
φ0(x) = 0 (27)

where φ0 denotes a solution to the equation.

We’ll use the external potential V as a way of including the walls. Since we
want to solve the GP equation for a vortex, we’ll set up a simple situation.

� The container of helium is a cylinder (similar to Fig. 5) of radius R
and length L. To describe this, use variables θ, d and z where d is the
distance from the center of the cylinder.

� To implement the effect of the walls we’ll set V to

V (x) =

{
0 if s < R

+∞ if |s ≥ R
(28)
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� To implement the cylindrical symmetry, set φ0(x) =
√
ρ0(d)eilθ, noting

that the phase must be quantized by the condition above for the contour
integral on circular contours around the vortex core.

� As a constraint (after all, we’re studying a vortex) assume the vortex
core is a straight line through the center of the cylinder going from one
end-wall to the other. The boundary condition is ρ(0) = 0.

� Take L to be very large so that we can ignore boundary effects at the
end-walls.

We rewrite the GP equation (Eq. (27)) in cylindrical coordinates and we
also simplify it by changing fields and variables to

ρ̃ =
g

µ
ρ,

α =
√
mµd.

(29)

The resulting equation is

ρ̃′′ +
ρ̃′

α
− 2

(
ρ̃2 − 1 +

l2

2α2

)
ρ̃ = 0, (30)

where an expression f ′ is the derivative of f with respect to α.

The numerical solution is shown in Fig. 4 (taken from https://ethz.ch/

content/dam/ethz/special-interest/phys/theoretical-physics/cmtm-dam/

documents/qg/Chapter_04.pdf).
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convenient to rescale variables in terms of the healing length ⇠, and the unperturbed condensate
wave function  ̃0, such that we have

x =
⇢

⇠
(4.16)

� =
f

f0
. (4.17)

The GPE with these rescaled variables then reads

�1

x

d

dx

✓
x

d�

dx

◆
+
�

x2
+ �3 � � = 0 (4.18)

which can be solved numerically. The solutions for l = 0, 1, 2 are plotted in figure 4.2, and show
the same behavior which we derived before using our approximations and assumptions.

Figure 4.2: Density profile of a vortex. Shown are the density profiles for the system
without a vortex (l = 0), and for a singly and doubly charged vortex (l = 1, 2). The short-
range behavior is given by f / ⇢l, while the asymptotic behavior of the wave function always
approaches the wave function of the unperturbed system. The cross over between the short-range
and the long-range behavior takes place around the healing length ⇢ = ⇠.

4.5 The energy of a vortex

We will now consider the energy of a vortex for a system contained in a cylinder with radius
D � ⇠. We have to take this assumption of a finite system, as the energy for an infinite system
would diverge logarithmically. The resulting energy can be approximated by subtracting the
energy of a system without a vortex from the energy of a system with a vortex. The resulting
estimate for the energy of a vortex per unit length,

✏v ⇡ l2⇡n
~2

m
ln

✓
D

⇠

◆
, (4.19)

has been confirmed by numerically solving the corresponding Gross-Pitaevskii equation, which

yields ✏v ⇡ l2⇡n~2

m ln
⇣
1.46D

⇠

⌘
. This energy scales with the square of the winding number l. This

28

Figure 4: Density of cylindrical vortices for winding numbers 0, 1 and 2.
The x-axis is the dimensionless distance α defined in the text. The curves
asymptote to 1 as α→∞.

It is easy to approximately solve the GP equation, Eq. (30) near α = 0 and
also asymptotically for large values of α (but recall that the solution only
applies within the walls of the container).

Near the vortex core, the density is ρ̃(α) ∝ αl.

It’s also easy to compute the velocity of the fluid circling the core. From Eq.
(26), we obtain

2πvd =
2lπ

m
so

v =
l

dm
. (31)

Near the center of the vortex (as the density goes to zero), the velocity grows
in inverse proportion to the distance from the core. This is familiar from our
experience of water draining out of the bathtub.

Far from the core, we can derive that the density becomes ρ̃(α) ≈ 1− l2

4α2 .
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3.4 Energy of a cylindrical vortex

We can compute the kinetic energy of the vortex as −∇
2

2m
φ0 = ρ̃′′ + ρ̃′

α
− l2 ρ̃

α2 .

Far from the core, this is mρ̃(α)v
2

2
noting that mρ̃ is the mass density. Using

Eq. (31) for the velocity, and working in cylindrical coordinates where the
volume element (for a cylindrically symmetrical integrand) is 1

mµ
2παdzdα,4

we have

KE>rc =
2π

mµ
L

� R̃

r̃c

mρ(α)
v2

2
αdα

=
2π

mg
L

� R̃

r̃c

mρ̃(α)
v2

2
αdα

=
2π

mg
L

� R̃

r̃c

mρ̃(α)
l2

2m2d2
αdα

=
πLl2µ

mg

� R̃

r̃c

(
1− l2

4α2

)
1

α2
αdα

=
πLρ0l

2

m

(
log(R/rc) +O(

1

r2
c

)

)
,

(32)

where R̃ = ρ0R, r̃c = ρ0rc and ρ0 = µ
g
. The cutoff value rc is picked arbi-

trarily, somewhere around the point that the density curve begins to flatten
out in Fig. 4. (Sometimes we set r̃c to 1 which we call the healing length lies
about halfway up the hill of the curve as shown in Fig. 4.) Since the energy
grows logarithmically out to the cylindrical walls containing the Helium, the
precise location of rc doesn’t matter provided it doesn’t become too small.

Let’s confirm that the above-computed kinetic energy is larger than the ki-
netic energy from the region between the vortex core and the cutoff rc. In
Eqs.(32), replace the integrand by the full KE. The KE is ρ̃′′ + ρ̃′

α
− l2 ρ̃

α2 .
Its value near the core using ρ̃(α) ≈ kαl is 0. The calculation leaves out
corrections as α approaches rc from below, but based on the numerical re-
sults shown in Fig. 4, we can see that the approximation should be rea-
sonably useful and makes clear that the kinetic energy is dominated by
πLρ0l2

m
log(R̃) = πLρ0l2

m
log(R

√
mµ).

So far, I’ve only talked about the kinetic energy. But the fluid has potential
energy, to be computed from the potential term in the Hamiltonian. What is
its contribution to the total energy? I’ll proceed to show that its contribution
is approximately 0. The reason for this, is that by definition, our vortex

4I’ve converted from the coordinate d to α =
√
mµd.
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is a solution of the equation which minimizes the Hamiltonian subject to
a boundary condition where the density is 0 along the vortex core. That
minimum evidently is achieved when the potential energy is 0 (which occurs
in the valley of the Mexican hat).

The energy is obtained by computing the Hamiltonian given in Eq. (5) ,

H ′ =

�
d3x

(
1

2m
∇φ†(x) ·∇φ(x) +

g

2

(
µ

g
− φ†(x)φ(x)

)2
)
.

Change to cylindrical coordinates, write φ = ρeilθ.

E>rc =
πLµ

mg

� R̃

r̃c

[(
d
√
ρ̃

dα

)2

+
l2

α2
ρ̃+

1

2
(ρ̃− 1)2

]
αdα

=
πLρ0l

2

m

(
log(R/rc) +O(

1

r̃2
c

)

)
.

(33)

We arrive at the last line of the equation by taking the large α approximation
and then expanding in powers of 1

α
.

3.5 Vortices in a rotating cylinder

Suppose we start with solid helium in a can – obtained by putting it under
lots of pressure near 0◦ K. Next we rotate the can. Then release the pressure
to melt the helium.

Figure 5: Rotating can of helium

Since the helium starts with a non-zero angular momentum, after melting it
should have the same angular momentum. The temperature is close to 0,
so (following the rules of statistical mechanics) the system will settle into a
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state with the lowest energy that preserves the initial angular momentum.
We will allow the system to have vortex lines and as we’ll see, those vortex
lines will be essential parts of that lowest-energy state.

Start the analysis by computing the initial kinetic energy of the just-melted
helium. The rotation is rigid, with each particle rotating around the central
axis with angular velocity ω. Assume the can has a radius R and a length
L. Furthermore, assume the initial particle density is uniformly ρ0 and that
the mass density is mρ0. The kinetic energy EK

R of rigid motion is

EK
R = 2πL

� R

0

(
mρ0

(rω)2

2

)
rdr

= πLmρ0ω
2R

4

4
.

(34)

Also, the angular momentum is

J = 2πL

� R

0

(
mρ0r

2ω
)
rdr

= πLmρ0ω
R4

2
.

(35)

Notice that I’ve been inconsistent in notation, and am now using the variable
r to measure the distance from the axis – whereas earlier I used the variable
d. Sorry ...

Let’s compare this initial state with a single cylindrical vortex state with
winding number l. We’ve computed in Eq. (33) that its energy, outside of a
critical radius rc is

E>rc =
πLρ0l

2

m

(
log(R/rc) +O(

1

r̃2
c

)

)
.

We can also compute the angular momentum Jv of this vortex state.

Jv = 2πL

� R

0

(
mρ0r

l

rm

)
rdr

= πLρ0lR
2,

(36)

where we’ve used the relationship for cylindrical vortices, that v = l/rm.
Since angular momentum is conserved, if the solid helium were eventually to
become a single cylindrical vortex, then we’d have to set Jv = J . This leads
to an equation for the winding number,

l = mω
R2

2
. (37)
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In case you’re wondering about units, there is an implicit factor of ~ which
we’ve set to 1 (so reinserting ~ we get l = mωR2

2~ ). Also, since l needs to
be an integer, the equation is only approximate – we set l to be the closest
integer to the RHS.

Then, with this value of the winding number, we can evaluate E>rc using Eq.
(33).

E>rc =
πLρ0l

2

m

(
log(R/rc) +O(

1

r̃2
c

)

)

=
πLmω2ρ0R

4

4

(
log(R/rc) +O(

1

r̃2
c

)

)

= EK
R

(
log(R/rc) +O(

1

r̃2
c

)

)
,

(38)

where the last line is obtained using Eq. (34).

What this shows us, is that the single cylindrical vortex has a higher energy
than the kinetic energy of the original solid helium. However, the solid
helium also has a large (negative) potential energy – required for keeping the
helium atoms stuck rigidly together – which we haven’t evaluated. So this
single vortex state isn’t thermodynamically favored over the original rigid
configuration.

However, if we can find a vortex configuration whose total energy is less than
the original kinetic energy of solid helium, then that vortex configuration
could be thermodynamically favored. We hypothesize that this can be ac-
complished with a vortex array – a collection of evenly spaced vortex lines
as in Fig. 6.

Figure 6: A circular portion of the helium container, seen from above

Assume that the lines are closely spaced and of uniform density throughout
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the container.5 Furthermore, assume that around each vortex line, the phase
winding number is l = 1. Then if we draw a circular contour of radius r
around the central axis of the helium container, it will enclose a number l(r)
of vortex lines. See, for example, Fig. 6). The winding number around that
contour will be l(r). Then with the same argument used previously to obtain
the velocity as a function of r, we find

v(r) =
l(r)

rm
. (39)

Setting the total number of lines to be l(R), it is easy to see that

l(r) =
r2

R2
l(R), (40)

and therefore

v(r) =

(
l(R)

mR2

)
r. (41)

Notice that this equation shows that the (average) fluid velocity is that of a

rigid solid rotating around the center axis with an angular velocity ω′ = l(R)
mR2 .

We can calculate the total angular momentum JA of the vortex array sim-
ilarly to what we did before in Eq. (36). It’s initially a bit puzzling that
the fluid seems to behave rigidly, despite the fact that one would expect at
the microscopic level, to see mini-“tornadoes” encircling each vortex line.
However, looking at Fig. 6, we notice that in between two vortex lines, the
respective vortex velocity fields are in opposite directions and thus in the
computation of total angular momentum, they tend to cancel (since the ve-
locity appears linearly in that calculation). This has the effect of leading to
the total angular momentum of a rigid body.

JA = 2πL

� R

0

(
mρ0r

l(r)

rm

)
rdr

= 2πL

� R

0

(
mρ0r

r2l(R)

R2rm

)
rdr

=
πLρ0l(R)R2

2
.

(42)

Notice that the minimum winding number for a line is l = 1. That is, the
vorticity is quantized. To find the total number l(R), recall that angular

5Further argumentation is needed in order to convince ourselves that the lowest-energy
configuration is one where the lines are of constant density. I haven’t constructed that
argument although it seems reasonable.
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momentum is conserved and therefore JA = J . Using Eq. (35) we get

l(R) = mωR2, (43)

and the line density is l̃ = l(R)
πR2 = mω

π~ , where I’ve re-inserted ~. Notice that
ω = ω′. That is, if the original solid helium rotates with angular velocity ω,
then the superfluid flow also rotates uniformly with the same angular velocity
(ω′ = ω) but unlike the solid helium, the superfluid is traversed by an array
of vortices.

Figure 7: Vortices in a Bose Einstein Condensate. The dark spots are the
cores of the vortices.

Feynman (p. 339 of Statistical Mechanics) computes (by taking the square-
root of l̃) that if the rotation speed is ω = 1 radian/sec, then the cores are
about 2 mm apart.

Finally, we are ready to compute the energy of the vortex array. Unlike the
computation of angular momentum, the kinetic energy involves the square
of the velocity and that quantity doesn’t cancel between vortex lines. On
the other hand, the squared velocity drops off quickly between vortex cores,
and the energy calculation can be done by assuming each vortex has a radius
of b = 2mm and a cutoff rc = 4.0Å. Then, since each vortex has a winding
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number l = 1, we obtain for the energy EA of the array,

EA = l(R)× Energy of a vortex of radius b

= (mωR2)
πLρ0

m
log(b/rc)

= ωLπR2ρ0 log(b/rc)

= 14ρ0ωπLR
2,

(44)

where the second line comes from Eq. (33) but substituting, in the expression
for the vortex energy, b for R and setting l=1. Note that even if we were to
change the core-width from 4.0Å to 0.4Å, that would only change the result
by about 20%.

We are now ready to compare the energy of the vortex array to the kinetic
energy of the rigidly rotating helium, as given by Eq. (34).

EA
EK
R

=
14ρ0ωπLR

2

πLm
~ ρ0ω2R4

4

= 4~
14

mωR2
.

(45)

If we take R = 1 cm and ω = 1 rad/sec, then the above energy ratio is
about 10−2. The vortex array is thus thermodynamically preferred at low
temperature to the rigid configuration6, and is what we’d expect to see at
low temperatures.

3.6 Ring vortices

Recall that a vortex core either is a line whose endpoints are terminated on
a boundary, or is closed loop. The most symmetric7 loop is a circular ring
such as the smoke ring shown in Fig. 8

6Since the rigid configuration has a negative potential energy, it seems possible to me
that its total energy ends up less than that of the vortex array. I haven’t seen an argument
against that, although maybe it would be unreasonable to assume that the potential energy
has roughly the same magnitude as the kinetic energy.

7A circular ring is presumably the lowest-energy loop of a given perimeter. I haven’t
thought too much about this, but it’s a typical kind of result.
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Figure 8: A smoke ring. The core is the center and all around it, there is a
vortex flow.

We will proceed to show that a ring vortex moves with a characteristic ve-
locity perpendicular to the ring, and we will compute both its energy and
momentum. The dispersion curve (energy versus momentum) of these rings
can be regarded as the dispersion curve of elementary excitations, from which
we can compute a Landau critical velocity. If the fluid velocity is greater than
the ring Landau critical velocity, then ring formations will be thermodynam-
ically favored and the fluid velocity will decrease. In other words, above that
critical velocity, the fluid is not a superfluid.

The reason this is important, is that for typical configurations, the ring criti-
cal velocity is much smaller than the critical velocity computed from normal
modes (the Bogoliubov theory). This explains why experimentally, we find
much smaller critical velocities than what is predicted by the Bogoliubov
theory.

The ring-vortex dispersion relation is derived in Landau-Lifshitz Vol. 9
(Statistical Physics) on pp. 115 and 116 (Problem 1 and its solution). The
derivation relies on a generalization of Eq. (31), which in turn was derived
from the circulation around a straight-line vortex core. For an arbitrary-
shape vortex filament, this generalized equation for a winding number l, is

v =
l

m

�
dl× r

r3
(46)

where the integration is along the filament, and r is the radius vector from
dl to the point where the velocity is observed. This equation is derived in
the same way that the Biot-Savart law is derived for magnetostatics, since
the relation between vorticity and velocity is the same as the relationship
between current and magnetic field.
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Figure 9: Derivation of vortex ring dispersion relation. P. 115 of Landau and
Lifshitz Vol. 9.
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Figure 10: Derivation of vortex ring dispersion relation. P. 116 of Landau
and Lifshitz Vol. 9.

In Fig. 10, the authors use ρ for mass-density, whereas we have been using ρ
for number-density. I’ll continue to use our convention (but it should be said
that our convention is non-standard – usually the number-density is written
n.)

The energy, Ering of a vortex ring of radius Rr is

Ering = 2π2Rrρ0
~2

m
log(

Rr

rc
), (47)

and the momentum, pring of that ring is

pring = 2π2ρ0~R2
r . (48)

The energy equation is, as usual, logarithmically dependent on the vortex-
core cutoff, so for large values of Rr the result is fairly insensitive to rc. Also,
for clarity I’ve re-inserted the correct factors of ~.
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From these equations, we have the dispersion relation

Ering =

√(
2π

~
m

)(
πρ0

~2

m

)
√
pring log

(
pring(

2π2ρ0
~
m

)
mr2

c

)
. (49)

This has the shape of Fig. 11.

 

Figure 11: Vortex ring dispersion curve

Recall that for a vortex of radius Rr the equation for the Landau critical
velocity is

vc = min
pring

Ering

pring

. (50)

Since there is exactly one value of pring for each ring-radius Rr, there is no
need to take a minimum so from Eqs. (47) and (48) we get

vc =
~
m

1

Rr

log(
Rr

rc
). (51)

We see that the critical velocity decreases as the ring-radius increases. How-
ever, the ring-radius is approximately capped by the widthD of the enclosure,
so we’ll take the superfluid vortex-induced critical velocity to be

vVc =
~
m

1

D
log(

D

rc
). (52)

As an example, take D = 10−5cms and rc = 4Å, then the critical veloc-
ity is about 80 cm/sec. The measured critical velocity is about 20 cm/sec
(according to Feynman) so is in the right ballpark.
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