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Introduction

» We'll cover material discussed in Lancaster 43.1 and 43.2.
» | find the treatment to be unsatisfactory, so will modify it somewhat.

» My version will follow Quantum Theory of Many Particle Systems
by Fetter and Walecka, Chapter 1.

» This section examines the ground state energy of a metal.
» Jellium Model: neutral system of interacting electrons in the
field of a uniform positive distribution
» Ground state is a bound state
» Energy is measured by vaporization

» We'll show
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Fig. 3.2 Approximate ground-state energy [first two
terms in Eq. (3.37)] of an electron gas in a uniform positive
background. .

where rg is the dimensionless electron spacing.



Free electron ground state — a simple treatment

Fermi Surface

» Electrons are fermions: Pauli exclusion principle
» Two electrons per momentum eigenstate — spin up,down
» Assume finite volume with periodic boundary conditions.
» Momentum eigenstates are plane waves
PF
> Z,KPF - Vf -0 (27r
» Then take N — 00,V — oo with fixed electron density n, = %
> Relate to inter-electron (nearest neighbor) distance r.:
N3 3
Vo 4nrd T 4nr3ad

DN (477@’38)
3

where rs = a’—; and ag is the Bohr radius.

Ne =




Free electron ground state — a simple treatment cont'd

» Compute the number of momentum-states with |p| < |p¢/|.

PF d3p PF ) A Vp3
dp = 3= FF
V/pzo (2r)? PP =3 VPR = 5
» Multiply by 2 for the two spin states: N = VPF
1
» Invert: pr = (37T2N) = (37r2 (4”%?33))3
» Kinetic energy density:
% V 4 d3p p _ 8n X/pF ptdp 8 V( 5
T (@r)PN /o 2m  10m(2r)p NPF
221

~

S

where ‘Ry’ is an abbreviation for rydberg; 1 Ry = %

221 Ry
r2 electron”

» Thus the kinetic energy-density is approximately



Second quantization — general review

» Second quantization: helps manage symmetry and antisymmetry

» Wave function approach:

> Single-particle basis functions: ¥, (x), ¥k, (X), ...

> Pigky (X1, %2, --) < (Yiey (X1) i, (X2).- = iy (X1) iy (%2)-- + -..)
» The minus sign (antisymmetry) is for fermions

> bra/ket notation: (x|k) = ¥x(x), |kik2) = |k1) ® |ka) etc.

» Annihilation and creation operators for fermions:
> 3/|0) = |k), a|0) =0, aca, + af,a = 63(k — k')
> So akal, =63k — k') — al,ak
» This formalism automatically takes care of antisymmetry.

» For simplicity pretend k is an integer
» Occupation number: [niny...) =[], — (af,)"™" |0)

il
M (nm!)2
> Eg. ifn; =1,n; =1, né =1, n; = 1; other n, and nfn are 0
(nnj...|mny...) = (0lasazal al [0) = 8(5 — j)8(7 — i) — &(7 — j)8(5 — i)




Second quantization — e.g. of anti-commutation algebra

(0lasaralaf|0) = (0las (6(7 — i) — alar) af|0)
= §(7 — i)(0|asal[0) — &(7 — j){0|asa] |0) + (0|asa]a] a|0)
= 6(7 — i)(0lasal[0) — 3(7 — j){0lasa]|0)
= (7 — )3(5 — j)(0[0) — 6(7 — j)a(5 — 1){0]0)—
— (7 — i)(0]a] a5[0) + (7 — j)(0|a] a5|0)
=0(5 —j)o(7 — i) = (7 = j)o(5 — i)

where we have used the facts that (0|0) = 1, a5|0) = 0 and a7|0) = 0.



Interactions — the system Hamiltonian

» The jellium is a positive background with constant density
N

n(x) = ne = 3;
» H = Hx + Hj + Helj + Hel

~2
> Hyg =Y, 5= is the kinetic energy

= Alx—x'|
> H = %eszd3xd3x’% is the jellium PE
—Alx=#] | A
> Hej=—€[d®*> 1 » % is the jellium-electron PE

— Al

> Hy = 1e? i Sf=s7 is the electron-electron PE

» )\ — 0 at the end

v

Hyv = H, + Heij + He is treated as a perturbation to the KE.

v

The N-electron free theory (Hk) ground state is |Q).
d
> |Q> = H|pi‘<p/: a;,PTaP?W”T'O>
> In future, suppress spins so write [Q) =[], _,, a$f|0>.
» Its energy was computed as %el‘i{mn.

» The perturbed energy is computed as AE = (Q|Hy|Q).




Interactions — the jellium potential

— @2 [ 3, e
> Define C = €? [ d3y e|y\

» H; is purely classical —a “number”, not an operator.
> E = (QHIQ) = H
» Compute £

E - //d3 BEILLCILLLO
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Interactions — the jellium-electron potential

v

Follow Chapter 4.2's treatment of one-body potentials

v

Consider electron potential V* caused by jellium at x
3 e WA= Aly—x|
> Let Vg = ——n x) [dPys—~Et——

ly—x|

x _ _eN 3 1 e i/ +x)-ag= Ayl _ N _—ix-q\/0
> Vo= vady v =—ye Vy

> From Lancaster example 4.4, V* = > o.p, V;‘lfpza;r,lapz.
V.. — _N 3ye—i(P1—P2)-x /0 T
> So Vej=—9y Zplpz [ d*xe i(py p2)XVP1—PzaP13P2
—_N 0 i — _N i
=—vy ijlp2 Vé(py — p2)\/p17pzaP1 ap, = —3C > i 3p,ap,
> Note that ), agiap(, is the number operator.

> So (QVay|Q) = ~MC(Q] T, ahap,|2) =

> Summary: Eqj = — (%) C



Interactions — the electron-electron potential

>

vV v vy

Let Vo= [ d3X4eJX'Tf\7MX‘
From Lancaster 4.63, Vo = 1 3" Vaabalakiq2p—a.
Should put spins back to get the right answer. See blue inserts.
Re-order operators in V. so that creation operators are on the right.
Ver = 33" kg Va (6%(0)0%(-q) — 26°(k-p+q)°(p-k-q)) +

Va (ak+qagap—q3l + 53(_C|)ap-q3|§ - 63(k—p+q)ak+qa,§)
Recall [Q) = [T p/<p, 25/0)-
If |q| > pr then (Qal =0

= if |p| > pr or |k| > pr then <Q|alalak+qap_q|§2> =0.
If |p|&|k| < pr then a}|Q) =0 and a]|Q) = 0.
(217al9) = 22p cep Va (3(2)°(-q) — 20 (k-p+a)3*(p-k-q)) =

2
2 Zp k<pF -2 Zp k<pr Vp k = 1 5 C Zp k<pr p k

The term in red is the Hartree term. The other is the Fock term.



Interactions — the Hartree and Fock terms

1/\/2

» The Hartree term (direct term) is H =
» 7 is “classical” and is the same as the Jelllum potential.
> The Fock term (exchange term)is F = —> ., Vpk
» F is quantum with no classical analogue.

o 2 3 —ix-q ,— A|x|
> Recall Vo = §; [ xS ——
> Lancaster Eq. (43.21) derives Vjq = WM.

pr d%q

> Recall ZQ<PF — Vf 0T 27r)3
» Then

) lpl=pr 3p IKl=pr g3 Lre?
HV/'PI—O (2m)* /k—o )2V (Il ~ &7 +33) )
(1)

> Lancaster (p. 385) derives limy_,o % = — 3% ¢e? = — %916 Ry,



Interactions — total interaction energy

» Summary
> jellium potential: £ = 3 (%) C.
)c
) C — 0916 Ry,

» jellium-electron potential: E.; = —

/N
<% <z

> electron-electron H + F: Ecre = 3 (

» Add all these terms up. Take A — 0.

» The terms proportional to C individually diverge.
» But they add up to 0 so the divergences cancel.

» The total is
Einteraction o 0.916

N N rs

Ry.



Interactions — sidebar on Lancaster
These notes are intended as clarification/correction of Lancaster p. 381.

>

vV vy vy VY y

Consider fermion operators Az, As, ..., An.

» Suppose each A; is either ag, or alf.

» Consider a product P = A1 As...Ap.
» By using anti-comm., change the order of terms in P.
» Manipulate P until all terms T have creation operators to the
left of annih. ops. Written : P : and called normal ordering.
> Define (A1Az) = AjAxt : A1 A; : (plus sign to swap ops).
> Example: (ak,.alj> =: ak,.aij 0O (ki — kj)

Wick's theorem is algorithm for normal ordering.

Refer to Wikipedia on Wick's theorem, for algorithm and proof.
Often, ak|g) = 0 where |g) is a ground state.

Then : T :|g >=0if T has at least one annih. op.

Lancaster needs : T : |2 >= 0 but that only works if the
right-most operator is a creation op. That’s not normal
ordering. His “Wick's theorem” is a variant for creation ops. on
the right.



Wigner crystals — Introduction

» Our results are from 1st term in perturbation series

» Born approximation: AE = (1g|V|10)
P 1) is free ground state composed from plane waves

» 2nd term in perturbation series diverges as V — oo (Wigner).

> Ec = (Q¢|H|Qs) < (W|H[Y) for all o) iff |Q¢) is full-H ground
state

» For large rs, the kinetic energy is small. PE dominates.
> So H ~ V. Wigner guessed for large rs, |Q¢) looks like a crystal.

» Let |[¢)) be an electron crystal wave function. We'll (sort of) show

> (Y| V|y) ~ -8R

» This is much Iess than the previously computed —m



Wigner crystals — energy calculation

» Continue to approximate the positive charges by jellium.

» The electrons are localized at crystal positions a;. e.g. BCC

> Ypcc(ri,ra,...) Zp(— )sgn( )53( (1) — a1)53(";7(2) —a)...

» gcc is in the coordinate representation; p's are permutations

» Use the Wigner-Seitz approximation to compute energy

» Imagine WS cell of radius r.. Contains one electron.

» Recall electron density n, = 4;’—,3

» Compute the electron-jellium eneergy in WS cell

» Compute the jellium-jellium energy in WS cell

» Only one electron so no energy contribution in WS cell

» Cells are electrically neutral so inter-cell energy can be ignored

~ a2 = dx §<1
~ T Ne€ Jo X — 2,

v
=2 ‘@m

Z‘@
X

ollw
LW

~

3
~ nee? flx‘ " d3x (‘xl) where n(r) = *750e —

=|m Z‘hr:n

€j+ sze (%_%):71758Ry

re



Wigner crystals — Interpretation of energy results

(ecc|H|YBcc) . _ 1.8
By T Ry

» Assume (I'm not sure why) that BCC gives lowest energy.
> So (for large r; ) 50 ~ —18

s

» But for low density (large r;),

» The Hartree-Fock (jellium) calculation was % - (% _ %) Ry .
» Define the correlation energy Ecorr = Eo — EnF

> At large r, ETO — _0.28 Ry.

>

At low rs (high density) Gell-Mann and Bruekner used summing
tricks to get
Ecorr = —0.094 + 0.0622In rg (3)



Electron energy summary

> The total energy density is %
E _ (22 0916 Ecorr
> N—(?_T) Ry + =

> limy, o0 S = 288 Ry,

» At low rs (high density) Gell-Mann and Bruekner used

summing tricks to get
||m Ecorr
rs—0

= (—0.094 + 0.0622 In r;) Ry



Digression: NaCl — energy calculation

0059990
e gu ng“g

Ou gg Q
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Salt crystal: grey balls are Na©, green balls are C/~

v

The ions (Na™ and C/7) are in a FCC lattice at positions a;.

» The nearest-neighbor distance is r. and the lattice spacing is 2re.

v

2.
Let £ =~z ﬁ z; (= £1) is charge of the ith ion

> Then E=1%",E =2F = NE
» FE, = FE; for all i
» Divide by 2 so we don't double-count
» Madelung computed E; = —%M = —%Ry , Where

| A — g—o where ag is the Bohr radius.
» M is the Madelung constant and is crystal-dependent.



Digression: NaCl — energy calculation cont'd

» Energy is dominated by potential term for large r;.
» The Madelung sum is conditionally convergent

» Depends on order of summation

» Physical principle is required — often boundary conditions
» Regularization methods can be used

» Lots of literature on the mathematics

» Click here for youtube derivation of the Madelung constant.
» Also see the wikipedia article on the Madelung constant.

Eo o _ 17 -
> Forsalt 3§ ~ —3=~-0.6 Ry

> M=17
> rsn =6
> 50%:f%Ryzf¥z—O.6 Ry.


https://www.youtube.com/watch?v=NlsAVaf-ehM
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