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Introduction
I We’ll cover material discussed in Lancaster 43.1 and 43.2.

I I find the treatment to be unsatisfactory, so will modify it somewhat.

I My version will follow Quantum Theory of Many Particle Systems
by Fetter and Walecka, Chapter 1.

I This section examines the ground state energy of a metal.
I Jellium Model: neutral system of interacting electrons in the

field of a uniform positive distribution
I Ground state is a bound state
I Energy is measured by vaporization

I We’ll show

where rs is the dimensionless electron spacing.



Free electron ground state – a simple treatment

 

I Electrons are fermions: Pauli exclusion principle
I Two electrons per momentum eigenstate – spin up,down

I Assume finite volume with periodic boundary conditions.
I Momentum eigenstates are plane waves
I
∑

p<pF
→ V

� pF
p=0

d3p
(2π)3

I Then take N →∞,V → ∞ with fixed electron density ne = N
V .

I Relate to inter-electron (nearest neighbor) distance re :

ne =
N

V
=

3

4πr3e
≈ 3

4πr3s a
3
0

V = N

(
4πr3s a

3
0

3

)
where rs ≡ re

a0
and a0 is the Bohr radius.



Free electron ground state – a simple treatment cont’d

I Compute the number of momentum-states with |p| ≤ |pf |.

V
� pF

p=0

d3p

(2π)3
=

4π

(2π)3
V
� pF

p=0

p2dp =
4π

3(2π)3
V(pF )3 =

Vp3F
6π2

I Multiply by 2 for the two spin states: N =
Vp3

F

3π2

I Invert: pF =
(
3π2 N

V
) 1

3 =
(

3π2
(

3
4πr3s a

3
0

)) 1
3

I Kinetic energy density:

W0

N
= 2
V
N

� pF

p=0

d3p

(2π)3
p2

2m
=

8π

(2π)3
V
N

� pF

p=0

p4dp

2m
=

8π

10m(2π)3
V
N

(pF )5

≈ 2.21

r2s
Ry

where ‘Ry’ is an abbreviation for rydberg; 1 Ry = e2

2a0

I Thus the kinetic energy-density is approximately 2.21
r2s

Ry
electron .



Second quantization – general review

I Second quantization: helps manage symmetry and antisymmetry

I Wave function approach:

I Single-particle basis functions: ψk1(x), ψk2(x), ...
I ψk1k4 (x1, x2, ...) ∝ (ψk1(x1)ψk4(x2)...± ψk4(x1)ψk1(x2)...+ ...)
I The minus sign (antisymmetry) is for fermions
I bra/ket notation: 〈x|k〉 ≡ ψk(x), |k1k2〉 ≡ |k1〉 ⊗ |k2〉 etc.

I Annihilation and creation operators for fermions:

I a†k|0〉 = |k〉, ak|0〉 = 0, aka
†
k′ + a†k′ak = δ3(k− k′)

I So aka
†
k′ = δ3(k− k′)− a†k′ak

I This formalism automatically takes care of antisymmetry.

I For simplicity pretend k is an integer
I Occupation number: |n1n2...〉 =

∏
m

1

(nm!)
1
2

(
a†m
)nm |0〉

I Eg. if ni = 1, nj = 1, n′5 = 1, n′7 = 1; other nm and n′m are 0

〈n′1n
′
2...|n1n2...〉 = 〈0|a5a7a

†
i a
†
j |0〉 = δ(5− j)δ(7− i)− δ(7− j)δ(5− i)



Second quantization – e.g. of anti-commutation algebra

〈0|a5a7a†i a
†
j |0〉 = 〈0|a5

(
δ(7− i)− a†i a7

)
a†j |0〉

= δ(7− i)〈0|a5a†j |0〉 − δ(7− j)〈0|a5a†i |0〉+ 〈0|a5a†i a
†
j a7|0〉

= δ(7− i)〈0|a5a†j |0〉 − δ(7− j)〈0|a5a†i |0〉
= δ(7− i)δ(5− j)〈0|0〉 − δ(7− j)δ(5− i)〈0|0〉−

− δ(7− i)〈0|a†j a5|0〉+ δ(7− j)〈0|a†i a5|0〉
= δ(5− j)δ(7− i)− δ(7− j)δ(5− i)

where we have used the facts that 〈0|0〉 = 1, a5|0〉 = 0 and a7|0〉 = 0.



Interactions – the system Hamiltonian

I The jellium is a positive background with constant density
n(x) = ne = N

V

I H = HK + Hj + Hel-j + Hel

I HK =
∑

i
p̂2
i

2m is the kinetic energy

I Hj = 1
2e

2
� �

d3xd3x ′ n(x)n(x
′)e−λ|x−x′|

|x−x′| is the jellium PE

I Hel-j = −e2
�
d3x

∑
i=1,N

n(x)e−λ|x−r̂i |

|x−r̂i | is the jellium-electron PE

I Hel = 1
2e

2
∑

i 6=j
e−λ|̂ri−r̂j |

|̂ri−r̂j | is the electron-electron PE

I λ→ 0 at the end

I HV = Hj + Hel-j + Hel is treated as a perturbation to the KE.

I The N-electron free theory (HK) ground state is |Ω〉.
I |Ω〉 =

∏
|pi |<pF

aup†pi adown†pi |0〉
I In future, suppress spins so write |Ω〉 =

∏
|pi |<pF

a†pi |0〉.
I Its energy was computed as 2.21

r2s

Ry
electron .

I The perturbed energy is computed as ∆E = 〈Ω|HV|Ω〉.



Interactions – the jellium potential
I Define C = e2

�
d3y e−λ|y|

|y|

I Hj is purely classical – a “number”, not an operator.

I Ej ≡ 〈Ω|Hj|Ω〉 = Hj

I Compute Ej

Ej =
1

2
e2

� �
d3xd3x ′

n(x)n(x′)e−λ|x−x
′|

|x− x′|

=
e2

2

(
N

V

)2 � �
d3xd3x ′

e−λ|x−x
′|

|x− x′|

=
1

2

(
N

V

)2 �
d3x

(
e2

�
d3y

e−λ|y|

|y|

)
=

(
N

V

)2
1

2

�
d3xC

=
1

2

(
N2

V

)
C

I Summary: Ej = 1
2

(
N2

V

)
C



Interactions – the jellium-electron potential

I Follow Chapter 4.2’s treatment of one-body potentials

I Consider electron potential V̂ x caused by jellium at x

I Let V x
q = − e2

V n(x)
�
d3y e−iy·qe−λ|y−x|

|y−x|

I V x
q = − e2

V
N
V
�
d3y ′ e

−i(y′+x)·qe−λ|y′|

|y′| = −N
V e
−ix·qV 0

q

I From Lancaster example 4.4, V̂ x =
∑

p1p2
V x
p1−p2a

†
p1ap2 .

I So V̂el-j = −N
V
∑

p1p2

�
d3xe−i(p1−p2)·xV 0

p1−p2a
†
p1ap2

= −N
V
∑

p1p2
Vδ(p1 − p2)V 0

p1−p2a
†
p1ap2 = −N

V C
∑

i a
†
pi api

I Note that
∑

i a
†
pi api is the number operator.

I So 〈Ω|V̂el-j|Ω〉 = −N
V C〈Ω|

∑
i a
†
pi api |Ω〉 = −N2

V C

I Summary: Eel-j = −
(

N2

V

)
C



Interactions – the electron-electron potential

I Let Vq = e2

V
�
d3x e−ix·qe−λ|x|

|x|

I From Lancaster 4.63, V̂el = 1
2

∑
pkq Vqa

†
pa
†
kak+qap−q.

I Should put spins back to get the right answer. See blue inserts.

I Re-order operators in V̂el so that creation operators are on the right.

I V̂el = 1
2

∑
pkq Vq

(
δ3(q)δ3(-q)− 2δ3(k-p+q)δ3(p-k-q)

)
+

Vq

(
ak+qa

†
pap-qa

†
k + δ3(−q)ap-qa

†
p − δ3(k-p+q)ak+qa

†
p

)
I Recall |Ω〉 =

∏
|p|≤pF a

†
p|0〉.

I If |q| > pF then 〈Ω|a†q = 0

=⇒ if |p| > pF or |k| > pF then 〈Ω|a†pa†kak+qap−q|Ω〉 = 0.

I If |p|&|k| ≤ pF then a†p|Ω〉 = 0 and a†k|Ω〉 = 0.

I 〈Ω|V̂el|Ω〉 = 1
2

∑
p,k≤pF Vq

(
δ3(q)δ3(-q)− 2δ3(k-p+q)δ3(p-k-q)

)
=

1
2

∑
p,k≤pF V0 − 1

2

∑
p,k≤pF Vp-k = 1

2
N2

V C −
∑

p,k≤pF Vp-k

I The term in red is the Hartree term. The other is the Fock term.



Interactions – the Hartree and Fock terms

I The Hartree term (direct term) is H = 1
2
N2

V C.

I H is “classical” and is the same as the jellium potential.

I The Fock term (exchange term) is F = −
∑

p,k≤pF Vp-k.

I F is quantum with no classical analogue.

I Recall Vp-k = e2

V
�
d3x e−ix·qe−λ|x|

|x| .

I Lancaster Eq. (43.21) derives Vp-q = 4πe2

V((|p|−|k|)2+λ2) .

I Recall
∑

q<pF
→ V

� pF
q=0

d3q
(2π)3 .

I Then

F → V2

� |p|=pF

|p|=0

d3p

(2π)2

(� |k|=pF

|k|=0

d3k

(2π)2
4πe2

V ((|p| − |k|)2 + λ2)

)
.

(1)

I Lancaster (p. 385) derives limλ→0
F
N = − 3pF

4π e2 = − 0.916
rs

Ry.



Interactions – total interaction energy

I Summary

I jellium potential: Ej = 1
2

(
N2

V

)
C.

I jellium-electron potential: Eel-j = −
(

N2

V

)
C

I electron-electron H+ F : Eel-el = 1
2

(
N2

V

)
C − 0.916

rs
N Ry.

I Add all these terms up. Take λ→ 0.

I The terms proportional to C individually diverge.
I But they add up to 0 so the divergences cancel.
I The total is

Einteraction

N
= −0.916

rs
Ry . (2)



Interactions – sidebar on Lancaster
These notes are intended as clarification/correction of Lancaster p. 381.

I Consider fermion operators A1,A2, ...,AN .

I Suppose each Ai is either aki or a†ki .
I Consider a product P = A1A2...AN .
I By using anti-comm., change the order of terms in P.
I Manipulate P until all terms T have creation operators to the

left of annih. ops. Written : P : and called normal ordering .
I Define 〈A1A2〉 = A1A2± : A1A2 : (plus sign to swap ops).

I Example: 〈aki a
†
kj
〉 =: aki a

†
kj
: + δ(3)(ki − kj)

I Wick’s theorem is algorithm for normal ordering.

I Refer to Wikipedia on Wick’s theorem, for algorithm and proof.

I Often, ak|g〉 = 0 where |g〉 is a ground state.

I Then : T : |g >= 0 if T has at least one annih. op.

I Lancaster needs : T : |Ω >= 0 but that only works if the
right-most operator is a creation op. That’s not normal
ordering. His “Wick’s theorem” is a variant for creation ops. on
the right.



Wigner crystals – Introduction

I Our results are from 1st term in perturbation series

I Born approximation: ∆E = 〈ψ0|V |ψ0〉
I ψ0 is free ground state composed from plane waves

I 2nd term in perturbation series diverges as V → ∞ (Wigner).

I EG = 〈ΩG |H|ΩG 〉 ≤ 〈ψ|H|ψ〉 for all |ψ〉 iff |ΩG 〉 is full-H ground
state

I For large rs , the kinetic energy is small. PE dominates.

I So H ≈ V . Wigner guessed for large rs , |ΩG 〉 looks like a crystal.

I Let |ψ〉 be an electron crystal wave function. We’ll (sort of) show

I 〈ψ|V |ψ〉 ≈ − 1.8 Ry
rs

I This is much less than the previously computed − 0.916 Ry
rs



Wigner crystals – energy calculation

I Continue to approximate the positive charges by jellium.

I The electrons are localized at crystal positions aj . e.g. BCC

I ψBCC (r1, r2, ...) ∝
∑

p(−1)sgn(p)δ3(rp(1) − a1)δ3(rp(2) − a2)...

I ψBCC is in the coordinate representation; p’s are permutations

I Use the Wigner-Seitz approximation to compute energy

I Imagine WS cell of radius re . Contains one electron.
I Recall electron density ne = 3

4πr3e
I Compute the electron-jellium energy in WS cell
I Compute the jellium-jellium energy in WS cell
I Only one electron so no energy contribution in WS cell
I Cells are electrically neutral so inter-cell energy can be ignored

I Eej

N ≈− nee
2
� |x|=re
0

d3x
|x| = − 3

2
e2

re

I Ejj

N ≈ nee
2
� |x|=re
0

d3x n(|x|)
|x| where n(r) = 4πr3ne

3 , =⇒ Ejj

N ≈
3
5
e2

re

I E0

N =
Eej

N +
Ejj

N ≈
e2

re

(
3
5 −

3
2

)
= − 1.8

rs
Ry.



Wigner crystals – Interpretation of energy results

I But for low density (large rs), 〈ψBCC |H|ψBCC 〉
N ≈ − 1.8

rs
Ry

I Assume (I’m not sure why) that BCC gives lowest energy.
I So (for large rs ) E0

N ≈ −
1.8
rs

I The Hartree-Fock (jellium) calculation was EHF

N =
(

2.2
r2s
− 0.916

rs

)
Ry .

I Define the correlation energy Ecorr = E0 − EHF

I At large rs , Ecorr

N = − 0.88
rs

Ry.

I At low rs (high density) Gell-Mann and Bruekner used summing
tricks to get

Ecorr = −0.094 + 0.0622 ln rs (3)



Electron energy summary

I The total energy density is E
N .

I E
N =

(
2.2
r2s
− 0.916

rs

)
Ry + Ecorr

N .

I limrs→∞
Ecorr
N ≈ −0.88

rs
Ry.

I At low rs (high density) Gell-Mann and Bruekner used
summing tricks to get

lim
rs→0

Ecorr

N
= (−0.094 + 0.0622 ln rs) Ry (4)



Digression: NaCl – energy calculation

Salt crystal: grey balls are Na+, green balls are Cl−

I The ions (Na+ and Cl−) are in a FCC lattice at positions ai .

I The nearest-neighbor distance is re and the lattice spacing is 2re .

I Let Ei ≡ −zi
∑

j ;j 6=i
e2zj
|ai−aj | ; zi (= ±1) is charge of the ith ion

I Then E = 1
2

∑
i Ei = 2N

2 E1 = NE1

I Ei = E1 for all i
I Divide by 2 so we don’t double-count

I Madelung computed E1 = − e2

re
M = − 2M

rsn
Ry , where

I rsn ≡ re
a0

where a0 is the Bohr radius.
I M is the Madelung constant and is crystal-dependent.



Digression: NaCl – energy calculation cont’d

I Energy is dominated by potential term for large rs .

I The Madelung sum is conditionally convergent

I Depends on order of summation
I Physical principle is required – often boundary conditions
I Regularization methods can be used
I Lots of literature on the mathematics

I Click here for youtube derivation of the Madelung constant.

I Also see the wikipedia article on the Madelung constant.

I For salt E0

N ≈ −
1.7
rsn
≈ -0.6 Ry

I M = 1.7
I rsn ≈ 6
I So E0

N = − 2M
rsn

Ry ≈ − 2×1.7
rs
≈ −0.6 Ry.

https://www.youtube.com/watch?v=NlsAVaf-ehM
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