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Introduction

▶ Goal: Prerequisites for Lancaster Chptr 44 on superconductors

▶ Summarize some key concepts of solid state physics

▶ Reference material:

▶ James Annett Superconductivity, Superfluids and Condensates
▶ Charles Kittell Introduction to Solid State Physics
▶ Neil Ashcroft and N. David Merman Solid State Physics

▶ My versions of those texts are available at
https://www.dropbox.com/scl/fo/r34zxultk39xm75lespd9/

ADgag5MONbaB3t5Vl5-0rDU?rlkey=

gquuntsf650aid2gumn5eo9qf&st=8pbuxhqt&dl=0.

https://www.dropbox.com/scl/fo/r34zxultk39xm75lespd9/ADgag5MONbaB3t5Vl5-0rDU?rlkey=gquuntsf650aid2gumn5eo9qf&st=8pbuxhqt&dl=0
https://www.dropbox.com/scl/fo/r34zxultk39xm75lespd9/ADgag5MONbaB3t5Vl5-0rDU?rlkey=gquuntsf650aid2gumn5eo9qf&st=8pbuxhqt&dl=0
https://www.dropbox.com/scl/fo/r34zxultk39xm75lespd9/ADgag5MONbaB3t5Vl5-0rDU?rlkey=gquuntsf650aid2gumn5eo9qf&st=8pbuxhqt&dl=0


Outline

▶ Follows Ashcroft and Mirman

▶ Drude theory developed around 1905

▶ Is basis for the modern understanding of conductivity

▶ Sections:

▶ Assumptions and some definitions
▶ DC Conductivity
▶ Hall Effect
▶ AC Conductivity



Assumptions I
▶ Metal has N fixed ions + electron gas (conduction electrons).

▶ The electron gas consists of nv valence electrons per nucleus.
▶ The ions consist of the nucleus plus bound electrons.
▶ Ionic charge = Z − nve
▶ Total charge of electron gas = nvNe.
▶ We’ll generally set nv = 1.
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(a) Schcnuuic pic.:wrc of an bolatcd ate>m (not to scale). !b) In a metal the nucleu~ and iun 
core rct;un their conligurauon 111 the free :11om. but the valence electrons leave the a tom to 
form the electron l!ill>. -
tached to much heavier particles, wh ich he considered to be immobilt:. At his time, 
however, there was no precise notion of the origin of the light. mobile electrons a nd 
the heavier. immobile, positively charged panicles. The solution to this problem is 
o ne of the fundamental achievements of the modern quantum theory o f solids. ln 
this discussion of the Drudc model however, we shall s imply assume (and in many 
metals this assumption can be justified) that when atoms o f a metallic element are 
brought together to form a metal. the valence electro ns become detached and wander 
freely through the metal. while tbe metallic ions remain intact and play the role of the 
immobile positive pan ides in Drudc·s theory. This model is indicated schematically 
in Figure L l. A single isolated atom of the metallic element has a nucleus of charge 
eZ0 • where Zo is the atomic number and e is the magnitude of the electronic charge3

: 

e = 4.80 x 10- 10 electrostatic units (csu) = 1.60 x 10- ' 9 coulombs. Surrounding 
the nucleus are Za electrons of total charge - eZa. A few of these, Z, are the relatively 
weakly bound valence electrons. The remainingZa - Z electrons art: relatively tightly 
bound to the nucleus, play much less of a role in chemical reactions. and are known 
as the core electrons. When these isolated atoms condense to form a metal, the core 
electrons remain bound to the nucleus to form the metallic ion, but the valence 
electrons are allowed to wander far away from their parent atoms. In the meta llic 
context they are calh:d conduction elecuons.4 

• We shall al"'a}'S take(' to be a pos11JVC number. 
• When. as in the Drude model. the core elect rons play a pa:.-,•ve role and the iun ucts as an indivisible 

inert entity. one often refers to the conduct ion electrons simply as ·· thc electrons." s;.l\ing the fullterm for 
Lim~'S when the distincllon bel ween conduction and core electrons is to be emphasized. 



Assumptions II
▶ Independent electron approximation

Neglect e− – e− interactions.

A suprisingly good approximation for many metallic phenomena

▶ Free electron approximation

Neglect ionic field on e−.

A poor approximation for many metallic phenomena

▶ Electron-ion collisions result in rapid velocity changes

▶ Between collisions, electrons obey F = ma for external F = ma

▶ Electron probability of collision in time dt is dt
τ .

▶ τ is called the relaxation time
▶ Electron will on average travel for τ before next collision.
▶ Electron on average traveled for τ after last collision.

▶ τ is independent of electron position or velocity.

▶ Electrons maintain thermal equilibrium only thru collisions
▶ Outgoing velocity is independent of ingoing velocity
▶ Outgoing velocity is tied to local temperature
▶ E.g. outgoing velocities are higher where local temp is higher



DC Conductivity I

▶ We will derive Ohm’s Law V = IR from the Drude Theory.

▶ V , the voltage, is the work to move an electron across a wire.
▶ I , the current, is the charge flowing per unit-time in the wire.
▶ R, the resistance (of the wire), is independent of V and I .

▶ Assume for now, that

▶ There is a straight metal wire of length L
▶ The metal has constant density
▶ The metal has x-sectional area A with unit normal n̂. A ≡ An̂.
▶ There is a uniform electric field E ⊥ A



DC Conductivity II

▶ Vd is the work per charge, W
q , to move a charge q a distance d .

▶ Electrons have charge q = −e.
▶ We = F · d = −eE · d so We

−e = E · d.
▶ Simplify by having d ⊥ A so W

−e = Ed
▶ Then V = EL and Vd = V d

L

▶ Define the current density j = j n̂.

▶ j is the charge flowing per unit time per unit area.
▶ So I = jA.
▶ Define the resistivity, ρ, by E = ρj.

▶ Since V = EL then V = ρjL = I ρL
A
.

▶ Since R = V
I
, we see R = ρL

A
.



DC Conductivity III
To derive Ohm’s Law, we must show ρ is independent of I and V.

▶ Recall thermal assumption

Collision outgoing velocities are independent of ingoing velocities

▶ Each electron accelerates according to F = ma for a time ∆t.

▶ So v = vo + a∆t = vo +
F
m∆t

▶ Each e− travels for an average time ∆t = τ before next collision.

▶ Outgoing velocities vo average to v̄o = 0.

▶ Since F = −eE, v = vo − e
m∆tE and v̄ = − e

m τE.



DC Conductivity IV
▶ Assume an electron density of n.

▶ In time dt electrons advance v̄dt.

▶ So nv̄dt electrons cross area A in time dt =⇒
▶ j = −nev̄ = ne2

m τE

▶ Recall that resistivity is defined by j = 1
ρE, so

▶ ρ = m
ne2τ

▶ This shows that ρ is independent of voltage and current.

▶ Measure ρ for metals using ρ = AR
L .

▶ Compute τ for metals using τ = m
ne2ρ .

▶ Mean free path MFP = v̄τ .
▶ Classical kinetic theory =⇒ 1

2mv̄2 = 3
2kBT

▶ So1 MFP =
√
3kBmT
ne2ρ

▶ Substitute measured values of ρ and set T to room temp

▶ Gives typical values of MFP for metals as 1Å− 10Å
▶ ≈ interatomic spacing, consistent with Drude model
▶ But for free electrons, classical kinetic theory is WRONG

1
It’s common, but wrong, to say that v̄ =

√
v̄2, but for highly-peaked dists., the approximation is valid.



Generalized Force Law I

▶ We derived v̄ = − e
m τE for a DC electric field.

▶ Next we will generalize this to

d p̄(t)

dt
= − p̄

τ
+ F(t)

▶ Note that in steady state, the LHS = 0 so p̄ = τF(t).

▶ When F(t) = −eE we get v̄ = − e
m τE.

▶ Consider an electron traveling between random time t and t + dt

0 τ 2τ

t t + dt

The probability of a collision between t and t + dt is dt
τ
.

▶ The probability of no collision between t and t + dt is 1− dt
τ



Generalized Force Law II
▶ First assume an electron has no collision.

▶ Its momentum changes from p(t) to p(t) + F(t)dt +O(dt2)
▶ Factor in the probability 1− dt

τ
▶ So the average momentum at t + dt is

p̄(t + dt) =

(
1− dt

τ

)(
p̄(t) + F(t)dt +O(dt2)

)
= p̄(t)− p̄(t)

dt

τ
+ F(t)dt +O(dt2)

▶ Then add the electrons with a collision in interval dt.

▶ Probability dt
τ multiplied by F(t)dt ′ with dt ′ ≤ dt.

▶ Contribution is O(dt2).

▶ Only the no-collision situation matters.

p̄(t + dt)− p̄(t)

dt
= − p̄(t)

τ
+ F(t) +O(dt)

▶ Result is d p̄(t)
dt = − p̄(t)

τ + F(t). Q.E.D.



Hall Effect I
In the late 1800’s, Hall measured the effect of magnetism on currents.
Drude theory explains many results.

12 Chapter 1 The Orude Throry of J\letals 

efforts to detect this extra resistance were unsuccessful, 15 but Hall did not regard this 
as conclusive: .. The magnet may te11d to deflect the current wtthout being able to do 
so. It is evident that in this case there would exist a s tate of stress in the conductor. 
the electricity pressing, as it were, toward one side of the wtrc ... This state of stress 
should appear as a transverse voltage (known today as the Hall voltage), which Hall 
was able to observe. 

J laJI's expenmeot is depicted in Frgure 1.3. An electric field £,. is applied to a wire 
extending in the x-dircctton and a current density j,. flows in the wire. In addition, a 
magnetic field H points in Lhc positive z-dircction. As a result the Loremz force"' 

e 
-- v x H 

c 
(1.13) 

acts to deflect electro ns m Lhe negative y-dircction (an electron's dnft velocity is 
opposite to the current flow). However the electrons cannot move very far in the 
y-dtrectton before running up against the stdcs of the wire. As they accumulate there, 
an electric field bllllds up in the y-dtrcction that opposes their motion and their 
further accumulation. In equilibrium this transverse field (or H all field)£,. wi ll balance 
the LorenLZ force, and current will flow only in the x-dtrcction. 

z y 

H 

+ .,. ... ::!: ... .,. .,. + + + + + "/"" 
/E,, /_ ---- - - /"7"---J, 

Figure 1.3 
Schematic ' icv. of Hairs eJtperimcnt. 

There are two quantities of interest. One is the ratio of the field a long. the wire 
£, to the current density ix· 

£, 
piHI = -. . (1.l4) 

),. 

This is the magnetorcsistance. 1 7 which Hall found to be field-independent. The other 
is the size of the tram.-verse field Er Since it balances the Lorentz force, one might 
expect it to be proportional both to the applied field H and to the current along the 

•J The increase m resoslllncc {kno" n a" the rn<t!!OCtor~istancc) does occur . "• \\e shall sec 10 Chapters 
12 ;Jnd I 3. The Drudc model. howc"er- predicrs Hall's null result. 

10 When dealinJ:! with nonmagnetic {or weukly magnetic) mu tcnliiS. we shall a lwa}·s call the field H . 
the difference bct\\cen B and H being extremely ~mall 

' M ore pre<:i~cly. ol ~~ the transverse mu@ncton:sistance. There IS also a lon!!oludinal magnclo-
rc:soslance_ measured w1th the magncuc field parallel 10 the current . 

▶ The setup
▶ Apply electric field (aka voltage) to conductor in x direction
▶ Apply magnetic field ⊥ current in z direction

▶ What happens?
▶ Current flows =⇒ electrons have velocity v in x direction
▶ Magnetic force is − e

c v×H in y direction
▶ That pushes electrons to the edge as shown
▶ ...which creates an electric field pushing them back
▶ Motion reaches equilibrium; current moves in x direction



Hall Effect II
2 interesting questions: (1) New resistivity? (2) Ey?

▶ The electron force is F = −e
(
E+ v× H

c

)
▶ Recall the generalized force law d p̄(t)

dt = − p̄(t)
τ + F(t).

▶ So d p̄(t)
dt = −e

(
E+ p̄(t)

mc ×H
)
− p̄(t)

τ

▶ In steady state, p is time-independent so

0 = −eEx − ωc p̄y −
p̄x
τ

0 = −eEy + ωc p̄x −
p̄y
τ

where ωc = eH
mc

▶ Recall j = −nev̄ = − ne
m p̄. Then multiply above by − neτ

m .

1

ρ
Ex = ωcτ j̄y + j̄x

1

ρ
Ey = −ωcτ j̄x − j̄y

where ρ is the Drude result ρ = m
ne2τ for resistivity.



Hall Effect III

▶ Recall that in equilibrium steady state, j̄y = 0.

▶ So Ex = ρj̄x . Magnetism doesn’t effect resistivity!

▶ This was observed experimentally by Hall.

▶ Substitute j̄y = 0 into the second equation.

Ey = −ωcρτ jx = RHHjx

where the Hall coefficient RH = − 1
nec .

▶ RH is independent of τ or other properties of the metal.

We previously noted that the measured value of τ usually disagrees with
the expected collision distance. Since RH is τ -independent, we might
expect the Drude prediction of RH to be in good agreement with
experiment. Mostly it is for alkali metals, not so much for the others.



AC Conductivity I
When is a metal wire transparent to light?

The method will be to check if Maxwell’s equations permit radiation to
flow along the wire.

▶ A trick to get cos and sin solutions is to make everything complex.

▶ A radiative solution has the form2 E(t) = E(ω)e−iωt

▶ Recall the generalized force law d p̄(t)
dt = − p̄(t)

τ + F(t) =⇒

▶ d p̄(t)
dt = − p̄(t)

τ − eE(ω)e−iωt

▶ Seek solution of the form p̄(t) = p̄(ω)e−iωt so

▶ −iωp̄(ω) = − p̄(ω)
τ − eE(ω) =⇒ p̄(ω) = − eE(ω)

1
τ −iω

▶ Since j(t) = − nep̄(t)
m we have j = j(ω)e−iωt where j(ω) = σ(ω)E(ω)

▶ σ(ω) = ne2

m( 1
τ −iω)

= 1
ρ

1
1−iωτ . σ(ω) is called “AC conductivity”

2
Really should be Ẽ(t) but we simplify notation. Also, superpositions are allowed.



AC Conductivity II

▶ We’ve made some (valid) assumptions.

▶ Moving charges produce a magnetic field.
▶ Induced force is −ev̄/c ×H where v̄ is small.

▶ Derivation of generalized force law assumes uniform force.
▶ But only between collisions
▶ If wavelength is much larger than mean free path, we’re OK
▶ But include position in j and E, so j(ω, x) = σ(ω)E(ω, x)

▶ Now apply Maxwell’s equations (assume no induced charge)

∇ · E = 0; ∇ ·H = 0; ∇× E = −1

c

∂H

dt

∇×H =
4π

c
j+

1

c

∂E

dt



AC Conductivity III

▶ Substitute j(ω, x) = σ(ω)E(ω, x) and get −∇2E = ω2

c2 ϵ(ω)E.

▶ ϵ(ω) = 1 + 4πiσ
ω is the “complex dielectric constant”.

▶ 4πiσ
ω = 4πiτne2

m(1−iωτ) .

▶ Assume very large frequency so ωτ >> 1.

▶ Then ϵ(ω) ≈ 1− ω2
P

ω2 where ωP = 4πne2

m .

▶ ωP is the “plasma frequency”
▶ By relationship of τ to resistivity, ωPτ >> 1 for most metals

▶ When ω < ωP then ϵ(ω) < 0 and E dies exponentially

▶ e.g. when the field is only x-dependent E(x) ∝ e−
ω
c x

▶ When ω > ωP , E oscillates

▶ e.g. when the field is only x-dependent E(x) ∝ e−i ωc x

▶ This is radiation through the wire – i.e. transparency



AC Conductivity IV

ωP can be computed based on electron density. For alkali metals, this is
ultraviolet. Results are good.

18 Chapter J The Drude Th~'CJ£) of~ INa I~ 

then, to a first approximation. Eqs. ( 1.35) and ( 1.29) give 

(1.37) 

.,.,here wp, known as the plasma frcquenc~ . i.<; given by 
, 

, 4nn,,-
c•J - -

P - m (1.38) 

When E IS real and negative (ctJ < wrl the solutions tor l.l~) decay exponential!)' in 
space; 1.e., no radiauon can propagate. Howc1er. \\hen E is posiuve (co > up) the 
solution!' to (1.341 become oscillatory. r-..tdiation can propagate, and the metal should 
become transparent. This conclusion is only valid. of course. tf our high-frequency 
assumption (I J6) is satisfied in the neighborhood of w = CJJp· If we express -r in terms 
of the resistivity through Eq. ( 1.8). then we can usc the definition ( 1.38) of the plasma 
frequency to compute that 

c:JpT = 1.6 X 102 (r•).l 2(~) . 
ao P,, 

( 1.39) 

Since the resisti1 ity in microhm centimeters, p,. is of the Ctrder of unity or less. and 
since r,.a0 is in the range from 2 to 6. the high frequency condition r 1.36) will be well 
sat:sfied at the pla!'ma frequency. 

The alkali metals have. in fact, tx--en observed to become transparent in the ultra­
violet. A numerical evaluation of ( 1.381 gives the frequency at whtch transparency 
should set in as 

( )

- J, 
0 r -

,. = _!!. = 11.4 x ...!.. x 101 s Hz 
P 2n Go 

(1 .40) 

or 

;,p =- = 0.26 ....!_ X 103 A. c (r )3 2 
,., Go 

(1.41) 

In Table L5 we list the threshold w~l\elengths calculated from (1.41). along with the 

Table 1.5 
OBSERVED A:\"D THEORETICAL \\ A VELE."';GTHS BELOW 
WH ICII THE ALKALI ~11:.1.-\LS BEC0)1E TRA:'\Sl'ARENT 

THEORETICAl." i. ORSEIWEO). 
El.0.1DIT 

(103 A) (103 A> 
L1 1.5 2.0 
Na ~0 2 I 
K :!.8 3.1 
Rb 3.1 3.6 
Cs 1 • . ...) 4.4 

• From Eq. (1.41}. 
Scurce. M . Born and E. Wotr. Prwciplno!Opm:.<, Pt:rgamon. New Yorl. . 
t964. 
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