Conductivity – The Drude Theory of Metals

Bill Celmaster

January 21, 2025

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Table of Contents

Introduction

Outline

Assumptions

DC Conductivity

Generalized Force Law

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The Hall Effect

AC Conductivity

Introduction

- ► Goal: Prerequisites for Lancaster Chptr 44 on superconductors
- Summarize some key concepts of solid state physics
- Reference material:
 - James Annett Superconductivity, Superfluids and Condensates

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Charles Kittell Introduction to Solid State Physics
- Neil Ashcroft and N. David Merman Solid State Physics
- My versions of those texts are available at https://www.dropbox.com/scl/fo/r34zxultk39xm75lespd9/ ADgag5MONbaB3t5V15-OrDU?rlkey= gquuntsf650aid2gumn5eo9qf&st=8pbuxhqt&dl=0.

Outline

- Follows Ashcroft and Mirman
- Drude theory developed around 1905
- Is basis for the modern understanding of conductivity

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Sections:
 - Assumptions and some definitions
 - DC Conductivity
 - Hall Effect
 - AC Conductivity

Assumptions I

Metal has N fixed ions + electron gas (<u>conduction electrons</u>).

- The electron gas consists of n_v valence electrons per nucleus.
- The ions consist of the nucleus plus bound electrons.
- lonic charge = $Z n_v e$
- Total charge of electron gas $= n_v Ne$.
- We'll generally set $n_v = 1$.

Figure 1.1

(a) Schematic picture of an isolated atom (not to scale). (b) In a metal the nucleus and ion core retain their configuration in the free atom, but the valence electrons leave the atom to form the electron gas.

Assumptions II

Independent electron approximation

Neglect $e^- - e^-$ interactions.

A suprisingly good approximation for many metallic phenomena

Free electron approximation

Neglect ionic field on e^- .

A poor approximation for many metallic phenomena

- Electron-ion collisions result in rapid velocity changes
- Between collisions, electrons obey $\mathbf{F} = m\mathbf{a}$ for external $\mathbf{F} = m\mathbf{a}$
- Electron probability of collision in time dt is $\frac{dt}{\tau}$.
 - τ is called the *relaxation time*
 - Electron will on average travel for \(\tau\) before next collision.
 - Electron on average traveled for τ after last collision.
- $\blacktriangleright \ \tau$ is independent of electron position or velocity.
- Electrons maintain thermal equilibrium only thru collisions
 - Outgoing velocity is independent of ingoing velocity
 - Outgoing velocity is tied to local temperature
 - E.g. outgoing velocities are higher where local temp is higher.

DC Conductivity I

• We will derive Ohm's Law V = IR from the Drude Theory.

V, the voltage, is the work to move an electron across a wire.

- I, the current, is the charge flowing per unit-time in the wire.
- R, the resistance (of the wire), is independent of V and I.
- Assume for now, that
 - There is a straight metal wire of length L
 - The metal has constant density
 - The metal has x-sectional area A with unit normal $\hat{\mathbf{n}}$. $\mathbf{A} \equiv A\hat{\mathbf{n}}$.

► There is a uniform electric field E ⊥ A

DC Conductivity II

▶ V_d is the work per charge, $\frac{W}{q}$, to move a charge q a distance d.

Electrons have charge q = -e.
W_e = F ⋅ d = -eE ⋅ d so M_e/(-e) = E ⋅ d.
Simplify by having d ⊥ A so M(-e) = Ed
Then V = EL and V_d = V d/L

b Define the current density $\mathbf{j} = j\hat{\mathbf{n}}$.

j is the charge flowing per unit time per unit area.

- ► So *I* = *jA*.
- Define the resistivity, ρ , by $\mathbf{E} = \rho \mathbf{j}$.
 - Since V = EL then $V = \rho jL = I \frac{\rho L}{A}$.
 - Since $R = \frac{V}{I}$, we see $R = \frac{\rho L}{A}$.

DC Conductivity III

To derive Ohm's Law, we must show ρ is independent of I and V.

Recall thermal assumption

Collision outgoing velocities are independent of ingoing velocities

• Each electron accelerates according to $\mathbf{F} = m\mathbf{a}$ for a time Δt .

• So
$$\mathbf{v} = \mathbf{v}_o + \mathbf{a}\Delta t = \mathbf{v}_o + \frac{\mathbf{F}}{m}\Delta t$$

• Each e^- travels for an average time $\overline{\Delta t} = \tau$ before next collision.

• Outgoing velocities \mathbf{v}_o average to $\mathbf{\bar{v}}_o = 0$.

Since
$$\mathbf{F} = -e\mathbf{E}$$
, $\mathbf{v} = \mathbf{v}_o - \frac{e}{m}\Delta t\mathbf{E}$ and $\overline{\mathbf{v}} = -\frac{e}{m}\tau\mathbf{E}$.

DC Conductivity IV

- Assume an electron density of *n*.
- ln time dt electrons advance $\bar{v}dt$.
- So $n\overline{v}dt$ electrons cross area A in time $dt \implies$

$$\mathbf{b} \mathbf{j} = -ne\mathbf{\bar{v}} = \frac{ne^2}{m}\tau\mathbf{E}$$

• Recall that resistivity is defined by $\mathbf{j} = \frac{1}{\rho} \mathbf{E}$, so

ρ = m/ne²τ
 This shows that ρ is independent of voltage and current.

- Measure ρ for metals using $\rho = \frac{AR}{L}$.
- Compute τ for metals using $\tau = \frac{m}{ne^2\rho}$.
- Mean free path $MFP = \bar{v}\tau$.
 - Classical kinetic theory $\implies \frac{1}{2}m\bar{v}^2 = \frac{3}{2}k_BT$
 - ► So¹ $MFP = \frac{\sqrt{3k_BmT}}{ne^2 o}$
 - Substitute measured values of ρ and set T to room temp

• Gives typical values of *MFP* for metals as $1\text{\AA} - 10\text{\AA}$

 \blacktriangleright pprox interatomic spacing, consistent with Drude model

But for free electrons, classical kinetic theory is WRONG

¹It's common, but wrong, to say that $\bar{v} = \sqrt{v^2}$, but for highly-peaked dists:, the approximation is valid. $\equiv 0.00$

Generalized Force Law I

• We derived $\bar{\mathbf{v}} = -\frac{e}{m} \tau \mathbf{E}$ for a DC electric field.

Next we will generalize this to

$$rac{dar{\mathbf{p}}(t)}{dt} = -rac{ar{\mathbf{p}}}{ au} + \mathbf{F}(t)$$

• Note that in steady state, the LHS = 0 so $\mathbf{\bar{p}} = \tau \mathbf{F}(t)$.

• When
$$\mathbf{F}(t) = -e\mathbf{E}$$
 we get $\mathbf{\bar{v}} = -\frac{e}{m}\tau\mathbf{E}$.

• Consider an electron traveling between random time t and t + dt

The probability of a collision between t and t + dt is $\frac{dt}{\tau}$.

► The probability of no collision between t and t + dt is $1 - \frac{dt}{\tau}$

Generalized Force Law II

First assume an electron has no collision.

Its momentum changes from **p**(t) to **p**(t) + **F**(t)dt + O(dt²)
 Factor in the probability 1 - dt/τ

So the average momentum at t + dt is

$$egin{aligned} ar{\mathbf{p}}(t+dt) &= \left(1-rac{dt}{ au}
ight) \left(ar{\mathbf{p}}(t) + \mathbf{F}(t)dt + \mathcal{O}(dt^2)
ight) \ &= ar{\mathbf{p}}(t) - ar{\mathbf{p}}(t)rac{dt}{ au} + \mathbf{F}(t)dt + \mathcal{O}(dt^2) \end{aligned}$$

Then add the electrons with a collision in interval *dt*.

Probability dt// τ multiplied by F(t)dt' with dt' ≤ dt.
 Contribution is O(dt²).

Only the no-collision situation matters.

$$\frac{\bar{\mathbf{p}}(t+dt)-\bar{\mathbf{p}}(t)}{dt}=-\frac{\bar{\mathbf{p}}(t)}{\tau}+\mathbf{F}(t)+\mathcal{O}(dt)$$

• Result is
$$\frac{d\bar{\mathbf{p}}(t)}{dt} = -\frac{\bar{\mathbf{p}}(t)}{\tau} + \mathbf{F}(t).$$
 Q.E.D.

Hall Effect I

In the late 1800's, Hall measured the effect of magnetism on currents. Drude theory explains many results.

Figure 1.3 Schematic view of Hall's experiment.

- The setup
 - Apply electric field (aka voltage) to conductor in x direction
 - Apply magnetic field \perp current in z direction
- What happens?
 - Current flows \implies electrons have velocity **v** in x direction
 - Magnetic force is $-\frac{e}{c}\mathbf{v} \times \mathbf{H}$ in y direction
 - That pushes electrons to the edge as shown
 - ...which creates an electric field pushing them back
 - Motion reaches equilibrium; current moves in <u>x</u> direction

Hall Effect II

2 interesting questions: (1) New resistivity? (2) \mathbf{E}_y ?

• The electron force is
$$\mathbf{F} = -e\left(\mathbf{E} + \mathbf{v} \times \frac{\mathbf{H}}{c}\right)$$

• Recall the generalized force law $\frac{d\bar{\mathbf{p}}(t)}{dt} = -\frac{\bar{\mathbf{p}}(t)}{\tau} + \mathbf{F}(t)$.

• So
$$\frac{d\bar{\mathbf{p}}(t)}{dt} = -e\left(\mathbf{E} + \frac{\bar{\mathbf{p}}(t)}{mc} \times \mathbf{H}\right) - \frac{\bar{\mathbf{p}}(t)}{\tau}$$

In steady state, p is time-independent so

$$0 = -eE_x - \omega_c \bar{p}_y - \frac{\bar{p}_x}{\tau}$$
$$0 = -eE_y + \omega_c \bar{p}_x - \frac{\bar{p}_y}{\tau}$$

where $\omega_c = \frac{eH}{mc}$ • Recall $\mathbf{j} = -ne\mathbf{\bar{v}} = -\frac{ne}{m}\mathbf{\bar{p}}$. Then multiply above by $-\frac{ne\tau}{m}$. $\frac{1}{\rho}E_x = \omega_c\tau\bar{j}_y + \bar{j}_x$ $\frac{1}{\rho}E_y = -\omega_c\tau\bar{j}_x - \bar{j}_y$

where ρ is the Drude result $\rho = \frac{m}{ne^2\tau}$ for resistivity. β , is the product of ρ and ρ and ρ and ρ are the product of ρ are the product of ρ and ρ are the product of ρ are the

Hall Effect III

• Recall that in equilibrium steady state, $\overline{j}_y = 0$.

• So $E_x = \rho \overline{j}_{x}$. Magnetism doesn't effect resistivity!

This was observed experimentally by Hall.

Substitute $\overline{j}_y = 0$ into the second equation.

$$E_y = -\omega_c \rho \tau j_x = R_H H j_x$$

where the Hall coefficient $R_H = -\frac{1}{nec}$.

 \triangleright R_H is independent of τ or other properties of the metal.

We previously noted that the measured value of τ usually disagrees with the expected collision distance. Since R_H is τ -independent, we might expect the Drude prediction of R_H to be in good agreement with experiment. Mostly it is for alkali metals, not so much for the others.

AC Conductivity I

When is a metal wire transparent to light?

The method will be to check if Maxwell's equations permit radiation to flow along the wire.

- A trick to get cos and sin solutions is to make everything complex.
- A radiative solution has the form $\mathbf{E}(t) = \mathbf{E}(\omega)e^{-i\omega t}$
- ► Recall the generalized force law $\frac{d\bar{\mathbf{p}}(t)}{dt} = -\frac{\bar{\mathbf{p}}(t)}{\tau} + \mathbf{F}(t) \implies$

$$\quad \mathbf{\underline{d}} \mathbf{\underline{p}}(t) = -\frac{\mathbf{\underline{p}}(t)}{\tau} - e\mathbf{E}(\omega)e^{-i\omega t}$$

• Seek solution of the form $\mathbf{\bar{p}}(t) = \mathbf{\bar{p}}(\omega)e^{-i\omega t}$ so

$$-i\omega\bar{\mathbf{p}}(\omega) = -\frac{\bar{\mathbf{p}}(\omega)}{\tau} - e\mathbf{E}(\omega) \implies \bar{\mathbf{p}}(\omega) = -\frac{e\mathbf{E}(\omega)}{\frac{1}{\tau} - i\omega}$$

• Since
$$\mathbf{j}(t) = -\frac{ne\overline{\mathbf{p}}(t)}{m}$$
 we have $\mathbf{j} = \mathbf{j}(\omega)e^{-i\omega t}$ where $\mathbf{j}(\omega) = \sigma(\omega)\mathbf{E}(\omega)$
• $\sigma(\omega) = \frac{ne^2}{m(\frac{1}{\tau} - i\omega)} = \frac{1}{\rho}\frac{1}{1 - i\omega\tau}$. $\sigma(\omega)$ is called "AC conductivity"

AC Conductivity II

We've made some (valid) assumptions.

- Moving charges produce a magnetic field.
 - lnduced force is $-e\bar{\mathbf{v}}/c \times \mathbf{H}$ where $\bar{\mathbf{v}}$ is small.
- Derivation of generalized force law assumes uniform force.
 - But only between collisions
 - If wavelength is much larger than mean free path, we're OK
 - **b** But include position in j and E, so $\mathbf{j}(\omega, \mathbf{x}) = \sigma(\omega)\mathbf{E}(\omega, \mathbf{x})$

Now apply Maxwell's equations (assume no induced charge)

$$abla \cdot \mathbf{E} = 0; \ \nabla \cdot \mathbf{H} = 0; \ \nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{H}}{\partial t}$$

 $abla \times \mathbf{H} = \frac{4\pi}{c} \mathbf{j} + \frac{1}{c} \frac{\partial E}{\partial t}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

AC Conductivity III

• Substitute $\mathbf{j}(\omega, \mathbf{x}) = \sigma(\omega) \mathbf{E}(\omega, \mathbf{x})$ and get $-\nabla^2 \mathbf{E} = \frac{\omega^2}{c^2} \epsilon(\omega) \mathbf{E}$. • $\epsilon(\omega) = 1 + \frac{4\pi i \sigma}{\omega}$ is the "complex dielectric constant". $\blacktriangleright \frac{4\pi i\sigma}{\omega} = \frac{4\pi i\tau ne^2}{m(1-i\omega\tau)}.$ Assume very large frequency so $\omega \tau >> 1$. • Then $\epsilon(\omega) \approx 1 - \frac{\omega_P^2}{\omega^2}$ where $\omega_P = \frac{4\pi ne^2}{m}$. $\triangleright \omega_P$ is the "plasma frequency" • By relationship of τ to resistivity, $\omega_P \tau >> 1$ for most metals • When $\omega < \omega_P$ then $\epsilon(\omega) < 0$ and **E** dies exponentially • e.g. when the field is only x-dependent $\mathbf{E}(x) \propto e^{-\frac{\omega}{c}x}$ • When $\omega > \omega_P$, **E** oscillates • e.g. when the field is only x-dependent $\mathbf{E}(x) \propto e^{-i\frac{\omega}{c}x}$ This is radiation through the wire – i.e. transparency

AC Conductivity IV

 ω_P can be computed based on electron density. For alkali metals, this is ultraviolet. Results are good.

WHICH THE ALKALI METALS BECOME TRANSPARENT		
ELEMENT	THEORETICAL ^a λ (10 ³ Å)	OBSERVED λ (10 ³ Å)
Li	1.5	2.0
Na	2.0	2.1
K	2.8	3.1
Rb	3.1	3.6
Cs	3.5	4.4

ORSERVED AND THEORETICAL WAVELENCTHS RELOW

^a From Eq. (1.41).

Source: M. Born and E. Wolf. Principles of Optics, Pergamon, New York, 1964.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00