Conductivity – The Sommerfeld Theory of Metals

Bill Celmaster

March 5, 2025

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Table of Contents

Review of the Drude Model

Review of statistical mechanics

Maxwell-Boltzmann and Fermi-Dirac Distributions

0-temperature consequences

Specific Heat at non-zero temperature

Appendix on the derivation of a_n in the Sommerfeld Expansion

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Review of the Drude Model

Electron Gas

- Metal has N fixed ions + electron gas (<u>conduction electrons</u>).
- ▶ The electron gas consists of 1 valence electron per nucleus¹.
- The ions consist of the nucleus plus bound electrons.
- lonic charge = Z e
- Total charge of electron gas = Ne.

Collision outgoing velocities are independent of ingoing velocities

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

¹More generally, n_v valence electrons per nucleus

Collision assumptions

Independent electron approximation

Neglect $e^- - e^-$ interactions.

A suprisingly good approximation for many metallic phenomena

Free electron approximation

Neglect ionic field on e^- .

A poor approximation for many metallic phenomena

- Electron-ion collisions result in rapid velocity changes
- Between collisions, electrons obey $\mathbf{F} = m\mathbf{a}$ for external $\mathbf{F} = m\mathbf{a}$
- Electron probability of collision in time dt is $\frac{dt}{\tau}$.
 - τ is called the *relaxation time*
 - Electron will on average travel for τ before next collision.
 - Electron on average traveled for τ after last collision.
- \blacktriangleright τ is independent of electron position or velocity.
- Electrons maintain thermal equilibrium only thru collisions
 - Outgoing velocity is independent of ingoing velocity
 - Outgoing velocity is tied to local temperature
 - E.g. outgoing velocities are higher where local temp is higher

The Force equation and Ohm's Law

• Ohm's Law for constant current: V = IR

- Start with $V = \mathbf{E} \cdot \mathbf{d}$.
- Relate V to **F** with $\mathbf{F} = -e\mathbf{E}$.
- Between collisions, $\mathbf{F} = m\mathbf{a}$.
- For constant **F** this gives average $\Delta \mathbf{v} = \frac{\mathbf{F}}{m} \tau$
- Relate I to the average drift velocity of electrons.

• Then
$$\rho = \frac{m}{ne^2\tau}$$
 where $\rho = \frac{L}{A}R$.

Mean free path is approximately inter-ionic distance

- τ (inferred from resistance) and $\bar{\mathbf{v}}$ imply MFP.
- Compute v from Boltzmann distribution (stat mech)
- Just a coincidence because v is wrong.
 - Otherwise the molar specific heat would be much higher.
 - \blacktriangleright Per-electron specific heat measured to be ≈ 0
 - Boltzmann dist predicts per-electron specific heat of $\frac{3}{2}kT$

Other results are derived from the generalized force law

$$\frac{d\bar{\mathbf{p}}(t)}{dt} = -\frac{\bar{\mathbf{p}}(t)}{\tau} + \mathbf{F}(t)$$

The Hall Effect

 Hall effect introduces magnetic field perpendicular to current. Use generalized force law.

- Magnetic field induces force in y direction
- But electron-accumulation on edges keeps current in x-direction
- So $E_x = \rho \overline{j}_x$. Magnetism doesn't effect resistivity!

This was observed experimentally by Hall.

•
$$E_y = -\omega_c \rho \tau j_x = R_H H j_x$$
 where the Hall coefficient $R_H = -\frac{1}{nec}$

• R_H is independent of τ or other properties of the metal.

Transparency

When is a metal transparent to light?

Method: Maxwell's equations in presence of collisions

- A radiative solution has the form $\mathbf{E}(t) = \mathbf{E}(\omega)e^{-i\omega t}$
- Apply generalized force law to $\mathbf{F} = e\mathbf{E}$.

Current is proportional to momentum.

Maxwell's equations involve current.

So

$$-
abla^2 \mathbf{E} = rac{\omega^2}{c^2} \epsilon(\omega) \mathbf{E}$$

where
$$\epsilon(\omega) = 1 + \frac{4\pi i \tau n e^2}{m(1-i\omega \tau)}$$

• Take $\omega \tau >> 1$.

• Then
$$\epsilon(\omega) \approx 1 - \frac{\omega_P^2}{\omega^2}$$
 where $\omega_P = \frac{4\pi n e^2}{m}$

- ω_P is the "plasma frequency"
- ▶ By relationship of τ to resistivity, $\omega_P \tau >> 1$ for most metals
- When $\omega < \omega_P$ then $\epsilon(\omega) < 0$ and **E** dies exponentially
- When $\omega > \omega_P$, **E** oscillates $\mathbf{E}(x) \propto e^{-i\frac{\omega}{c}x}$

► This is radiation through the wire – i.e. transparency

Review of statistical mechanics

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Postulate of Equal A Priori Probabilities – Example 1

An isolated system in equilibrium is equally likely to be in any of its accessible states.

No restrictions on single-particle states

Table: Total of three dice adding up to 7. No restrictions.

Die 1	Die 2	Die 3
1	1	5
1	5	1
1	2	4
1	4	2
1	3	3
2	1	4
2	4	1
2	2	3
2	3	2

3 dice add up to a total of 7. 15 possible configurations.

- ► 5 configs where the *red system* is 1, so P₇(1) = 5/15 = 33%.
- Similarly, $P_7(2) = 4/15 = 27\%$.
- Etc. until $P_7(5) = 1/15 = 7\%$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Postulate of Equal A Priori Probabilities – Example 2

An isolated system in equilibrium is equally likely to be in any of its accessible states.

Restrictions: 2 particles can't be in same single-particle state

Table: Total of three dice adding up to 7. With restrictions.

Die 1	Die 2	Die 3
1	2	4
1	4	2
2	1	4
2	4	1

3 dice add up to a total of 7.

- 6 possible configurations.
 - 2 configs where the red system is 1, so P(1) = 2/6 = 33%.
 - Similarly, $P_7(2) = 2/6 = 33\%$.

•
$$P_7(4) = 2/6 = 33\%$$
.

• $P_7(1) = P_7(3) = P_7(5) = 0$

Distributions

Figure: Total energy is E_{tot} . Total particles = N_{tot} .

- System B has many more states than system A.
- A and B are free to exchange energy (but not particles)
- ▶ For electron gas, assume independent and free *e*[−] approximation

• Then the single-electron energy is $E = \frac{p^2}{2m} = \frac{1}{2}mv^2$

- Thermal equilibrium \implies Law of Equal a Priori Probability
- Thermal distributions: e⁻-density distribution about v is f(v)dv

Maxwell-Boltzmann and Fermi-Dirac Distributions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Comparison of MB and FD distributions

- Classical mechanics \implies Maxwell-Boltzmann distribution.
- Quantum mechanics for fermions \implies Fermi-Dirac distribution.
 - Actually, QM predicts p distribution.
 - We cheat by claiming p = mv

MB: Maxwell-Boltzmann (distinguishable particles)

•
$$f_{MB}(\mathbf{v}) = n \left(\frac{m\beta}{2\pi}\right)^{\frac{3}{2}} e^{-\beta E} \left(\beta = \frac{1}{k_B T}\right)$$

FD: Fermi-Dirac (indisting. particles & Pauli exclusion)

►
$$f_{FD}(\mathbf{v}) = \frac{\left(\frac{m}{\hbar}\right)^3}{4\pi^3} \frac{1}{1+e^{\beta(E-k_BT_0)}}$$
 (β = inverse temperature)

Set T_0 , the **Fermi temperature**, by $\int d^3 v f_{FD}(\mathbf{v}) = n$

Figure: Distributions for typical metallic densities at room temperature. $T/T_0 = .01j$. f is rescaled.

FD distribution at T = 0

A D N A 目 N A E N A E N A B N A C N

This distribution should be derivable from the QM ground state

QM ground state for electrons

- Electrons are fermions: Pauli exclusion principle
 - Two electrons per momentum eigenstate spin up,down

Assume finite volume with periodic boundary conditions.

Momentum eigenstates are plane waves

$$\blacktriangleright \sum_{p < p_F} \rightarrow \mathcal{V} \int_{p=0}^{p_F} \frac{d^3 p}{(2\pi\hbar)^3}$$

▶ Then take $N \to \infty, \mathcal{V} \to \infty$ with fixed electron density $n = \frac{N}{\mathcal{V}}$.

• Compute the number of momentum-states with $|\mathbf{p}| \leq |\mathbf{p}_f|$.

$$\mathcal{V}\int_{
ho=0}^{
ho_{F}}rac{d^{3}p}{(2\pi\hbar)^{3}}=rac{4\pi}{(2\pi\hbar)^{3}}\mathcal{V}\int_{
ho=0}^{
ho_{F}}p^{2}dp=rac{4\pi\hbar}{3(2\pi\hbar)^{3}}\mathcal{V}(p_{F})^{3}=rac{\mathcal{V}p_{F}^{3}}{6\pi^{2}\hbar^{3}}$$

• Multiply by 2 for the two spin states: $N = \frac{V p_F^2}{3\pi^2 \hbar^3} \implies p_F = (3\pi^2 n)^{\frac{1}{3}} \hbar$ like the FD distribution at T = 0.

0-temperature consequences

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Average speed and kinetic energy

MB distribution: $\bar{\mathbf{v}}^2 = \frac{1}{\pi} \int d^3 v f_{MB}(\mathbf{v}) v^2 = \frac{4\pi}{\pi} \int_0^\infty dv f_{MB}(\mathbf{v}) v^4 = \frac{3k_B T}{\pi}$ **Room temperature** $T = 300^{\circ} K$. Then² $\bar{\mathbf{v}} = 1.2 \times 10^5$ m/s • Average kinetic energy is $\bar{E} = \frac{1}{2}m\bar{v}^2 = 0.04eV$ FD distribution: See the figure. (would be similar for T = 0) • Define $v_F = \sqrt{2k_BT_0/m}$. Then $\frac{1}{2}mv_F^2 = k_BT_0$. • $f_{FD} \approx \frac{\left(\frac{m}{h}\right)^3}{4\pi^3}$ if $v > v_F$ otherwise $f_{FD} \approx 0$, for T of room temp. • Then $n = 4\pi \frac{\left(\frac{m}{h}\right)^3}{4\pi^3} \int_0^{v_F} dv v^2 = 4\pi \frac{\left(\frac{m}{h}\right)^3}{4\pi^3} \frac{v_F^3}{2} \implies v_F = (3n\pi^2)^{\frac{1}{3}} \frac{\hbar}{4\pi^3}$ • Copper: $n \approx 2.8 \times 10^{22} / cm^3$. Then $T_0 = 8.1 \times 10^{40} K$. • $\bar{v}^2 = \frac{1}{2} \int d^3 v f_{FD}(\mathbf{v}) v^2 = 4\pi \frac{\left(\frac{\pi}{\hbar}\right)^3}{4\pi} \int_0^{v_F} dv v^4 = \frac{3\hbar^2 \pi}{5\pi^2} \left(9n^2 \pi\right)^{\frac{1}{3}}$ • Copper: $\bar{v} = 1.2 \times 10^6 \text{m/s}$. • Average kinetic energy is $\bar{E} = \frac{1}{2}m\bar{v}^2 = 7.0eV$

 2 It's common, but wrong, to say that $\bar{v} = \sqrt{v^{2}}$, but for highly-peaked dists:, the approximation is valid. $\equiv \sqrt{\sqrt{v}}$

Mean free path

• Recall the mean free path is $\mathcal{L} = \bar{\mathbf{v}}\tau$.

• Also recall that τ is related to the resistivity ρ by $\tau = \frac{m}{ne^2\rho}$.

For Cu, $\rho = 1.7$ micro-ohm centimeters so $\tau = 2.5^{-14}$ secs.

- MB: MFP = $\bar{v}\tau$ = 2.5x10⁻¹⁴s x 1.2x10⁵m/s = 30Å
- **FD:** MFP = $\bar{v}\tau$ = 2.5x10⁻¹⁴s x 1.2x10⁶m/s = 300Å
- The classical theory predicts a MFP about 10 times the copper inter-ionic distance, which is larger than we'd expect. But the quantum theory predicts a MFP 100 times the copper inter-ionic distance.
- QM cannot predict x and v simultaneously, so it's generally not possible to compute (or even talk about) a MFP obtained using electron speeds. Sommerfeld's theory blends QM and classical arguments. Ashcroft and Mermin discuss the justification.

Specific Heat – the lowest order approximation

- The constant-volume specific heat of the electron gas $c_V = \frac{\partial \bar{E}}{\partial T}$.
- Comparing the FD distribution figures above at $T = 300^{\circ}K$ and below at $T = 0^{\circ}K$ we see that \overline{E} is $\approx T$ -independent.
 - \blacktriangleright So, for the FD distribution (quantum), $c_V\approx 0$
 - In good agreement with experiment
- For the MB distribution we obtained $\bar{E} \approx \frac{3}{2} k_B T$.
 - So, for the MB distribution (classical), c_V $\approx \frac{3}{2}k_B$ Disagrees completely with experiment
- For higher order approximations, perform a temperature-expansion.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Specific Heat at non-zero temperature

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Mean values at non-zero temperature

• Write energy *E* as E(v) and define³ $f_{FD}(E)dE \equiv f_{FD}(\mathbf{v})d^{3}v$.

Then

$$f_{FD}(E) = g(E)f(E)$$

where $g(E) = \frac{\sqrt{2Em^3}}{\pi^2\hbar^3}$ and $f(E) = \frac{1}{1+e^{\frac{E-k_BT_0}{k_BT}}}$.

• The average of $\mathcal{P}(E)$ is then $\overline{\mathcal{P}} = \int_0^\infty \left[\mathcal{P}(E)g(E) \right] f(E)dE$.

³ This is an abuse of notation. Should use a different function name. $\langle \Box \rangle \langle \Box$

The Sommerfeld expansion part I

Integrate by parts

$$ar{\mathcal{P}} = -\int_0^\infty \mathcal{K}(E) f'(E) dE$$

where $K(E) = \int_0^E \left[\mathcal{P}(E')g(E') \right] dE'$ (antiderivative)

• f' spikes around $k_B T_0$ so Taylor-expand K around $E = k_B T_0$.

• $f'(E - k_B T_0)$ is even, so only keep even terms of K's expansion

$$\bar{\mathcal{P}} = -\int_0^\infty \sum_{j=0}^\infty \frac{(E - k_B T_0)^{2j}}{(2j)!} \frac{d^{2j} \mathcal{K}(E)}{dE^{2j}} \bigg|_{E = k_B T_0} f'(E) dE \quad (1)$$

The Sommerfeld expansion part II

▶ This expansion can be manipulated⁴ to

$$\bar{\mathcal{P}} = \int_0^{k_B T_0} \left[\mathcal{P}(E)g(E) \right] dE + \sum_{j=1}^\infty a_j (k_B T)^{2j} \frac{d^{2j-1} \left[\mathcal{P}(E)g(E) \right]}{dE^{2j-1}} \bigg|_{E=k_B T_0}$$

where $a_j = (2 - \frac{1}{2^{2(j-1)}}) \zeta(2j)$

That is the Sommerfeld Expansion.

⁴For details, see Appendix C (*The Sommerfeld Expansion*) of Ashcroft and Mermin + (= + (= +) =) < (-)

 T_0

Find
$$T_0$$
 by setting $\mathcal{P}(E) = 1$ so $\overline{\mathcal{P}} = n$. Recall $g(E) = \frac{\sqrt{2Em^3}}{\pi^2\hbar^3}$

$$n = \int_{0}^{k_{B}T_{0}} g(E)dE + a_{1}(k_{B}T)^{2}g'(E)\Big|_{E=k_{B}T_{0}} + \dots$$
$$= \frac{\sqrt{8m^{3}}}{3\pi^{2}\hbar^{3}} (k_{B}T_{0})^{\frac{3}{2}} \left(1 + a_{1}\frac{3}{4}\left(\frac{T}{T_{0}}\right)^{2} + \dots\right)$$

• Solve for T_0 with ansatz $T_0 = k_B a \left(1 + b \left(\frac{T}{a}\right)^2 + ...\right)$

• Rewrite, and eventually substitute $a_1 = \frac{\pi^2}{6}$

$$n = \frac{\sqrt{8m^3}}{3\pi^2\hbar^3} \left(k_B a \left(1 + b \left(\frac{T}{a} \right)^2 + \dots \right) \right)^{\frac{3}{2}} \left(1 + a_1 \frac{3}{4} \left(\frac{T}{a} \right)^2 + \dots \right)$$
$$= \frac{\sqrt{8m^3}}{3\pi^2\hbar^3} \left(k_B a \right)^{\frac{3}{2}} \left(1 + \left(\frac{T}{a} \right)^2 \left(\frac{3b}{2} + a_1 \frac{3}{4} + \dots \right) \right)$$

 \bar{E} and c_V

From the Sommerfeld expansion, and again using $g(E) = \frac{\sqrt{2Em^3}}{\pi^2\hbar^3}$

$$\begin{split} \bar{E} &= \int_{0}^{k_{B}T_{0}} Eg(E)dE + a_{1}(k_{B}T)^{2}(Eg)'(E)\Big|_{E=k_{B}T_{0}} + \dots \\ &= \frac{\sqrt{8m^{3}}}{5\pi^{2}\hbar^{3}} \left(k_{B}T_{0}\right)^{\frac{5}{2}} \left(1 + a_{1}\frac{15}{4}\left(\frac{T}{T_{0}}\right)^{2} + \dots\right) \\ &= \frac{\sqrt{8m^{3}}}{5\pi^{2}\hbar^{3}} \left(k_{B}a(1 + b\left(\frac{T}{a}\right)^{2} + \dots)\right)^{\frac{5}{2}} \left(1 + a_{1}\frac{15}{4}\left(\frac{T}{a}\right)^{2} + \dots\right) \\ &= \frac{\sqrt{8m^{3}}}{5\pi^{2}\hbar^{3}} \left(k_{B}a\right)^{\frac{5}{2}} \left(1 + \frac{5\pi^{2}}{12}\left(\frac{T}{a}\right)^{2} + \dots\right) \end{split}$$

$$(2)$$

Then the specific heat is

$$c_V = \frac{d\bar{E}}{dT} = \frac{\pi^2}{2} \frac{T}{T_0} nk_B + \dots$$
(3)

At very low temps, the conduction-electron contribution to c_V is dominant. Alkali metals agree with experiment.

Appendix on the derivation of a_n in the Sommerfeld Expansion

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Derivation I

▶ By changing variables in Eq. (1) Ashcroft and Mermin derive

$$a_n = -\int_{-k_B T_0}^{\infty} \frac{x^{2n}}{(2n)!} \left(\frac{1}{1+e^x}\right)' dx$$

They say that "by elementary manipulations" a_n = (2 - 1/(2²ⁿ⁻¹) ζ(2n)
 Here are the elementary manipulations.

First, integrate by parts for x > 0.

$$a_n^{>} = \int_0^\infty \left(\frac{x^{2n}}{(2n)!}\right)' \left(\frac{1}{1+e^x}\right) dx$$
$$= \int_0^\infty \left(\frac{x^{2n-1}}{(2n-1)!}\right) \left(\frac{1}{1+e^x}\right) dx$$

► Note⁵

$$\frac{1}{1+e^{x}} = e^{-x} \frac{1}{1+e^{-x}} = e^{-x} \sum_{m=0}^{\infty} \left(-e^{-x}\right)^{m} = \sum_{m=0}^{\infty} (-1)^{m} e^{-(m+1)x}$$

$$\frac{1}{1+e^{x}} = \sum_{m=0}^{\infty} (-y)^{m} \text{ when } y < 1$$

Derivation II

Then

• Change variables to y = (m+1)x so $x^{(2n-1)}dx = \frac{1}{(m+1)^{2n}}y^{(2n-1)}dy$.

$$a_n^{>} = \sum_{m=0}^{\infty} (-1)^m \frac{1}{(m+1)^{2n}} \int_0^{\infty} \frac{y^{(2n-1)}}{(2n-1)!} e^{-y} dy$$

In general,

$$\int_0^\infty z^k e^{-z} dz = (-1)^k \frac{d^k}{d\alpha^k} \int_0^\infty e^{-\alpha z} dz \bigg|_{\alpha=1} = (-1)^k \left(\frac{d^k}{d\alpha^k} \left(\frac{-1}{\alpha}\right)\right) \bigg|_{\alpha=1} = (-1)^k (-1)^k k!$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

So

$$a_n^> = \sum_{m=0}^{\infty} (-1)^m \frac{1}{(m+1)^{2n}}$$

• This sum is known as the Dirichlet η function $\eta(2n)$.

Derivation III

Next integrate by parts
$$a_n^< = -\int_{-k_B T_0}^0 \frac{x^{2n}}{(2n)!} \left(\frac{1}{1+e^x}\right)' dx$$
Note⁶ $a_n^< = -\int_{-k_B T_0}^0 \frac{x^{2n}}{(2n)!} \left(\frac{1}{1+e^x} - 1\right)' dx$

$$a_n^< = \int_{-k_B T_0}^0 \frac{x^{2n-1}}{(2n-1)!} \left(\frac{1}{1+e^x} - 1\right) dx - \left(\frac{x^{2n}}{(2n)!} \left(\frac{1}{1+e^x} - 1\right)\right) \Big|_{-k_B T_0}^0$$

- The last term can be dropped if k₀T₀ is large enough.⁷
- Change variables x = -z, expand⁷ $\frac{1}{1+e^{-z}} 1$

$$a_{n}^{<} = -\int_{0}^{k_{B}T_{0}} \frac{z^{2n-1}}{(2n-1)!} \sum_{m=0}^{\infty} (-1)^{m+1} e^{-(m+1)z} dz$$

$$\approx \int_{0}^{\infty} \frac{z^{2n-1}}{(2n-1)!} \sum_{m=0}^{\infty} (-1)^{m} e^{-(m+1)z} dz$$

$$= a_{n}^{>}$$
(4)

• Therefore $a_n = a_n^{<} + a_n^{>} = 2\eta(2n) = (2 - 2^{2-2n})\zeta(2n)$

⁶The derivative of a constant is 0

⁷The expansion depends on an approximation that the integrand is essentially 0 when $x < = +k_B T_0$ $\Rightarrow q = -9 q$