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Section 1

Review of the Drude Model



Electron Gas

▶ Metal has N fixed ions + electron gas (conduction electrons).

▶ The electron gas consists of 1 valence electron per nucleus1.

▶ The ions consist of the nucleus plus bound electrons.

▶ Ionic charge = Z − e

▶ Total charge of electron gas = Ne.

Collision outgoing velocities are independent of ingoing velocities

1
More generally, nv valence electrons per nucleus



Collision assumptions
▶ Independent electron approximation

Neglect e− – e− interactions.

A suprisingly good approximation for many metallic phenomena

▶ Free electron approximation

Neglect ionic field on e−.

A poor approximation for many metallic phenomena

▶ Electron-ion collisions result in rapid velocity changes

▶ Between collisions, electrons obey F = ma for external F = ma

▶ Electron probability of collision in time dt is dt
τ .

▶ τ is called the relaxation time
▶ Electron will on average travel for τ before next collision.
▶ Electron on average traveled for τ after last collision.

▶ τ is independent of electron position or velocity.

▶ Electrons maintain thermal equilibrium only thru collisions
▶ Outgoing velocity is independent of ingoing velocity
▶ Outgoing velocity is tied to local temperature
▶ E.g. outgoing velocities are higher where local temp is higher



The Force equation and Ohm’s Law
▶ Ohm’s Law for constant current: V = IR

▶ Start with V = E · d.
▶ Relate V to F with F = −eE.
▶ Between collisions, F = ma.
▶ For constant F this gives average ∆v = F

m τ
▶ Relate I to the average drift velocity of electrons.
▶ Then ρ = m

ne2τ where ρ = L
AR.

▶ Mean free path is approximately inter-ionic distance
▶ τ (inferred from resistance) and v̄ imply MFP.
▶ Compute v̄ from Boltzmann distribution (stat mech)
▶ Just a coincidence because v̄ is wrong.

▶ Otherwise the molar specific heat would be much higher.
▶ Per-electron specific heat measured to be ≈ 0
▶ Boltzmann dist predicts per-electron specific heat of 3

2
kT

▶ Other results are derived from the generalized force law

d p̄(t)

dt
= − p̄(t)

τ
+ F(t)

▶ Just Newton’s Law adjusted by probability of collision



The Hall Effect

▶ Hall effect introduces magnetic field perpendicular to current. Use
generalized force law.

12 Chapter 1 The Orude Throry of J\letals 

efforts to detect this extra resistance were unsuccessful, 15 but Hall did not regard this 
as conclusive: .. The magnet may te11d to deflect the current wtthout being able to do 
so. It is evident that in this case there would exist a s tate of stress in the conductor. 
the electricity pressing, as it were, toward one side of the wtrc ... This state of stress 
should appear as a transverse voltage (known today as the Hall voltage), which Hall 
was able to observe. 

J laJI's expenmeot is depicted in Frgure 1.3. An electric field £,. is applied to a wire 
extending in the x-dircctton and a current density j,. flows in the wire. In addition, a 
magnetic field H points in Lhc positive z-dircction. As a result the Loremz force"' 

e 
-- v x H 

c 
(1.13) 

acts to deflect electro ns m Lhe negative y-dircction (an electron's dnft velocity is 
opposite to the current flow). However the electrons cannot move very far in the 
y-dtrectton before running up against the stdcs of the wire. As they accumulate there, 
an electric field bllllds up in the y-dtrcction that opposes their motion and their 
further accumulation. In equilibrium this transverse field (or H all field)£,. wi ll balance 
the LorenLZ force, and current will flow only in the x-dtrcction. 
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Figure 1.3 
Schematic ' icv. of Hairs eJtperimcnt. 

There are two quantities of interest. One is the ratio of the field a long. the wire 
£, to the current density ix· 

£, 
piHI = -. . (1.l4) 

),. 

This is the magnetorcsistance. 1 7 which Hall found to be field-independent. The other 
is the size of the tram.-verse field Er Since it balances the Lorentz force, one might 
expect it to be proportional both to the applied field H and to the current along the 

•J The increase m resoslllncc {kno" n a" the rn<t!!OCtor~istancc) does occur . "• \\e shall sec 10 Chapters 
12 ;Jnd I 3. The Drudc model. howc"er- predicrs Hall's null result. 

10 When dealinJ:! with nonmagnetic {or weukly magnetic) mu tcnliiS. we shall a lwa}·s call the field H . 
the difference bct\\cen B and H being extremely ~mall 

' M ore pre<:i~cly. ol ~~ the transverse mu@ncton:sistance. There IS also a lon!!oludinal magnclo-
rc:soslance_ measured w1th the magncuc field parallel 10 the current . 

▶ Magnetic field induces force in y − direction
▶ But electron-accumulation on edges keeps current in

x-direction

▶ So Ex = ρj̄x . Magnetism doesn’t effect resistivity!

▶ This was observed experimentally by Hall.

▶ Ey = −ωcρτ jx = RHHjx where the Hall coefficient RH = − 1
nec .

▶ RH is independent of τ or other properties of the metal.



Transparency

▶ When is a metal transparent to light?

▶ Method: Maxwell’s equations in presence of collisions

▶ A radiative solution has the form E(t) = E(ω)e−iωt

▶ Apply generalized force law to F = eE.
▶ Current is proportional to momentum.
▶ Maxwell’s equations involve current.
▶ So

−∇2E =
ω2

c2
ϵ(ω)E

where ϵ(ω) = 1 + 4πiτne2

m(1−iωτ)

▶ Take ωτ >> 1.

▶ Then ϵ(ω) ≈ 1− ω2
P

ω2 where ωP = 4πne2

m .
▶ ωP is the “plasma frequency”
▶ By relationship of τ to resistivity, ωPτ >> 1 for most metals

▶ When ω < ωP then ϵ(ω) < 0 and E dies exponentially
▶ When ω > ωP , E oscillates E(x) ∝ e−i ωc x

▶ This is radiation through the wire – i.e. transparency



Section 2

Review of statistical mechanics



Postulate of Equal A Priori Probabilities – Example 1
An isolated system in equilibrium is equally likely to be in any of its
accessible states.

No restrictions on single-particle states

Table: Total of three dice adding up to 7.
No restrictions.

Die 1 Die 2 Die 3
1 1 5
1 5 1
1 2 4
1 4 2
1 3 3
2 1 4
2 4 1
2 2 3
2 3 2
... ... ...
... ... ...

3 dice add up to a total of 7.
15 possible configurations.

▶ 5 configs where the red system
is 1, so P7(1) = 5/15 = 33%.

▶ Similarly, P7(2) = 4/15 = 27%.

▶ Etc. until P7(5) = 1/15 = 7%.



Postulate of Equal A Priori Probabilities – Example 2

An isolated system in equilibrium is equally likely to be in any of its
accessible states.

Restrictions: 2 particles can’t be in same single-particle state

Table: Total of three dice adding up to 7.
With restrictions.

Die 1 Die 2 Die 3
1 2 4
1 4 2
2 1 4
2 4 1
... ... ...
... ... ...

3 dice add up to a total of 7.
6 possible configurations.

▶ 2 configs where the red system
is 1, so P(1) = 2/6 = 33%.

▶ Similarly, P7(2) = 2/6 = 33%.

▶ P7(4) = 2/6 = 33%.

▶ P7(1) = P7(3) = P7(5) = 0



Distributions

Figure: Total energy is Etot. Total particles = Ntot.

A

B

▶ System B has many more states than system A.

▶ A and B are free to exchange energy (but not particles)

▶ For electron gas, assume independent and free e− approximation

▶ Then the single-electron energy is E = p2

2m = 1
2mv2

▶ Thermal equilibrium =⇒ Law of Equal a Priori Probability

▶ Thermal distributions: e−-density distribution about v is f (v)dv



Section 3

Maxwell-Boltzmann and Fermi-Dirac
Distributions



Comparison of MB and FD distributions
▶ Classical mechanics =⇒ Maxwell-Boltzmann distribution.

▶ Quantum mechanics for fermions =⇒ Fermi-Dirac distribution.

▶ Actually, QM predicts p distribution.
▶ We cheat by claiming p = mv

▶ MB: Maxwell-Boltzmann (distinguishable particles)

▶ fMB(v) = n
(

mβ
2π

) 3
2

e−βE (β = 1
kBT

)

▶ FD: Fermi-Dirac (indisting. particles & Pauli exclusion)

▶ fFD(v) =
(m

ℏ )
3

4π3
1

1+eβ(E−kBT0)
(β = inverse temperature)

▶ Set T0, the Fermi temperature, by
�
d3vfFD(v) = n

· 10 40 

' 
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(a) The Maxwell-Boltzmann and Fermi-Dirac distributions for typical metallic densities 
at room temperature. (Both curves are for the dcns•ty given by T = 0 01 Tu.) The scale 
is the same for both distributions, and has been normalized so that the Fermi-Dirac 
distribution approaches I at low energies. Below room temperature the differences between 
the two distributions arc even more marked. (b) A v1cw of that pan of (a) between x = 0 
and-~ = 10. The .~-axis has been stretched by about a faaor of 10. and the/-axts has been 
compressed by about 500 to get all of the Ma>.weii·Boh.zmann distribution in the figure. 
On this scale the graph oft he Fermi-Dirac dis tribution is iod•st•nguishable from the x-axi~. 

Figure: Distributions for typical metallic densities at room temperature. T/T0 = .01j. f is rescaled.



FD distribution at T = 0

▶ Take T → 0.

lim
β→∞

fFD(v) = lim
β→∞

(
m
ℏ
)3

4π3

1

1 + eβ(E−kBT0)
=


1
4

(
m
πℏ
)3

if v ≤ (3π2n)
1
3

m ℏ,

0 if v >
(3π2n)

1
3

m ℏ.

f

0 100
𝑥 =

100 𝐸

𝑘𝐵𝑇0

Figure: Fermi-Dirac distribution as T → 0

▶ This distribution should be derivable from the QM ground state



QM ground state for electrons
▶ Electrons are fermions: Pauli exclusion principle

▶ Two electrons per momentum eigenstate – spin up,down

 ▶ Assume finite volume with periodic boundary conditions.

▶ Momentum eigenstates are plane waves
▶
∑

p<pF
→ V

� pF
p=0

d3p
(2πℏ)3

▶ Then take N → ∞,V → ∞ with fixed electron density n = N
V .

▶ Compute the number of momentum-states with |p| ≤ |pf |.

V
� pF

p=0

d3p

(2πℏ)3
=

4π

(2πℏ)3
V
� pF

p=0

p2dp =
4πℏ

3(2πℏ)3
V(pF )3 =

Vp3F
6π2ℏ3

▶ Multiply by 2 for the two spin states:

N =
Vp3

F

3π2ℏ3 =⇒ pF =
(
3π2n

) 1
3 ℏ like the FD distribution at T = 0.



Section 4

0-temperature consequences



Average speed and kinetic energy

▶ MB distribution:
▶ v̄2 = 1

n

�
d3vfMB(v)v2 = 4π

n

�∞
0

dvfMB(v)v
4 = 3kBT

m

▶ Room temperature T = 300◦K . Then2 v̄ = 1.2x105m/s
▶ Average kinetic energy is Ē = 1

2mv̄2 = 0.04eV

▶ FD distribution: See the figure. (would be similar for T = 0)
▶ Define vF =

√
2kBT0/m. Then 1

2mv2
F = kBT0.

▶ fFD ≈ (m
ℏ )

3

4π3 if v > vF otherwise fFD ≈ 0, for T of room temp.

▶ Then n = 4π
(m

ℏ )
3

4π3

� vF
0

dvv2 = 4π
(m

ℏ )
3

4π3

v3
F

3 =⇒ vF = (3nπ2)
1
3
ℏ
m

▶ Copper: n ≈ 2.8x1022/cm3. Then T0 = 8.1x104◦K.

▶ v̄2 = 1
n

�
d3vfFD(v)v2 = 4π

(m
ℏ )

3

4nπ3

� vF
0

dvv4 = 3ℏ2π
5m2

(
9n2π

) 1
3

▶ Copper: v̄ = 1.2x106m/s.
▶ Average kinetic energy is Ē = 1

2mv̄2 = 7.0eV

2
It’s common, but wrong, to say that v̄ =

√
v̄2, but for highly-peaked dists., the approximation is valid.



Mean free path

▶ Recall the mean free path is L = v̄τ .

▶ Also recall that τ is related to the resistivity ρ by τ = m
ne2ρ .

▶ For Cu, ρ = 1.7 micro-ohm centimeters so τ = 2.5−14 secs.

▶ MB: MFP = v̄τ = 2.5x10−14s x 1.2x105m/s = 30Å

▶ FD: MFP = v̄τ = 2.5x10−14s x 1.2x106m/s = 300Å

▶ The classical theory predicts a MFP about 10 times the copper
inter-ionic distance, which is larger than we’d expect. But the
quantum theory predicts a MFP 100 times the copper inter-ionic
distance.

▶ QM cannot predict x and v simultaneously, so it’s generally not
possible to compute (or even talk about) a MFP obtained using
electron speeds. Sommerfeld’s theory blends QM and classical
arguments. Ashcroft and Mermin discuss the justification.



Specific Heat – the lowest order approximation

▶ The constant-volume specific heat of the electron gas cV = ∂Ē
∂T .

▶ Comparing the FD distribution figures above at T = 300◦K and
below at T = 0◦K we see that Ē is ≈ T -independent.

▶ So, for the FD distribution (quantum), cV ≈ 0
▶ In good agreement with experiment

▶ For the MB distribution we obtained Ē ≈ 3
2kBT .

▶ So, for the MB distribution (classical), cV ≈ 3
2kB

▶ Disagrees completely with experiment

▶ For higher order approximations, perform a temperature-expansion.



Section 5

Specific Heat at non-zero temperature



Mean values at non-zero temperature

▶ Write energy E as E (v) and define3 fFD(E )dE ≡ fFD(v)d3v .

▶ Then
fFD(E ) = g(E )f (E )

where g(E ) =
√
2Em3

π2ℏ3 and f (E ) = 1

1+e
E−kBT0

kBT

.

▶ The average of P(E ) is then P̄ =
�∞
0

[P(E )g(E )] f (E )dE .

3
This is an abuse of notation. Should use a different function name.



The Sommerfeld expansion part I
▶ Integrate by parts

P̄ = −
� ∞

0

K (E )f ′(E )dE

where K (E ) =
� E

0
[P(E ′)g(E ′)] dE ′ (antiderivative)

▶ f ′ spikes around kBT0 so Taylor-expand K around E = kBT0.
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▶ f ′(E − kBT0) is even, so only keep even terms of K ’s expansion

P̄ = −
� ∞

0

∞∑
j=0

(E − kBT0)
2j

(2j)!

d2jK (E )

dE 2j

∣∣∣∣
E=kBT0

f ′(E )dE (1)



The Sommerfeld expansion part II

▶ This expansion can be manipulated4 to

P̄ =

� kBT0

0

[P(E )g(E )] dE+
∞∑
j=1

aj(kBT )2j
d2j−1 [P(E )g(E )]

dE 2j−1

∣∣∣∣
E=kBT0

where aj =
(
2− 1

22(j−1)

)
ζ(2j)

▶ That is the Sommerfeld Expansion.

4
For details, see Appendix C (The Sommerfeld Expansion) of Ashcroft and Mermin



T0

▶ Find T0 by setting P(E ) = 1 so P̄ = n. Recall g(E ) =
√
2Em3

π2ℏ3 .

n =

� kBT0

0

g(E )dE + a1(kBT )2g ′(E )

∣∣∣∣
E=kBT0

+ ...

=

√
8m3

3π2ℏ3
(kBT0)

3
2

(
1 + a1

3

4

(
T

T0

)2

+ ...

)

▶ Solve for T0 with ansatz T0 = kBa
(
1 + b

(
T
a

)2
+ ...

)
▶ Rewrite, and eventually substitute a1 =

π2

6

n =

√
8m3

3π2ℏ3

(
kBa

(
1 + b

(
T

a

)2

+ ...

)) 3
2
(
1 + a1

3

4

(
T

a

)2

+ ...

)

=

√
8m3

3π2ℏ3
(kBa)

3
2

(
1 +

(
T

a

)2(
3b

2
+ a1

3

4
+ ...

))

▶ kBa =
(
3π2n

) 2
3 ℏ2

2m .

▶ Coefficient of T 2 must be 0. So b = − 1
2a1 = −π2

12



Ē and cV
▶ From the Sommerfeld expansion, and again using g(E ) =

√
2Em3

π2ℏ3

Ē =

� kBT0

0

Eg(E )dE + a1(kBT )2(Eg)′(E )

∣∣∣∣
E=kBT0

+ ...

=

√
8m3

5π2ℏ3
(kBT0)

5
2

(
1 + a1

15

4

(
T

T0

)2

+ ...

)

=

√
8m3

5π2ℏ3

(
kBa(1 + b

(
T

a

)2

+ ...)

) 5
2
(
1 + a1

15

4

(
T

a

)2

+ ...

)

=

√
8m3

5π2ℏ3
(kBa)

5
2

(
1 +

5π2

12

(
T

a

)2

+ ...

)
(2)

▶ Then the specific heat is

cV =
dĒ

dT
=

π2

2

T

T0
nkB + ... (3)

▶ At very low temps, the conduction-electron contribution to cV is
dominant. Alkali metals agree with experiment.



Section 6

Appendix on the derivation of an in the
Sommerfeld Expansion



Derivation I
▶ By changing variables in Eq. (1) Ashcroft and Mermin derive

an = −
� ∞

−kBT0

x2n

(2n)!

(
1

1 + ex

)′

dx

▶ They say that “by elementary manipulations” an =
(
2− 1

22n−1

)
ζ(2n)

▶ Here are the elementary manipulations.

▶ First, integrate by parts for x > 0.

a>n =

� ∞

0

(
x2n

(2n)!

)′(
1

1 + ex

)
dx

=

� ∞

0

(
x2n−1

(2n − 1)!

)(
1

1 + ex

)
dx

▶ Note5

1

1 + ex
= e−x 1

1 + e−x
= e−x

∞∑
m=0

(
−e−x

)m
=

∞∑
m=0

(−1)me−(m+1)x

5 1
1+y

=
∑

(−y)n when y < 1



Derivation II

▶ Change variables to y = (m + 1)x so x (2n−1)dx = 1
(m+1)2n y

(2n−1)dy .

▶ Then

a>n =
∞∑

m=0

(−1)m
1

(m + 1)2n

� ∞

0

y (2n−1)

(2n − 1)!
e−ydy

▶ In general,

� ∞

0

zke−zdz = (−1)k
dk

dαk

� ∞

0

e−αzdz

∣∣∣∣
α=1

= (−1)k
(

dk

dαk

(
−1

α

)) ∣∣∣∣
α=1

= (−1)k(−1)kk!

▶ So

a>n =
∞∑

m=0

(−1)m
1

(m + 1)2n

▶ This sum is known as the Dirichlet η function η(2n).



Derivation III

▶ Next integrate by parts a<n = −
� 0

−kBT0

x2n

(2n)!

(
1

1+ex

)′
dx

▶ Note6 a<n = −
� 0

−kBT0

x2n

(2n)!

(
1

1+ex − 1
)′

dx

a<n =

� 0

−kBT0

x2n−1

(2n − 1)!

(
1

1 + ex
− 1

)
dx−

(
x2n

(2n)!

(
1

1 + ex
− 1

)) ∣∣∣∣0
−kBT0

▶ The last term can be dropped if k0T0 is large enough.7

▶ Change variables x = −z , expand7 1
1+e−z − 1

a<n = −
� kBT0

0

z2n−1

(2n − 1)!

∞∑
m=0

(−1)m+1e−(m+1)zdz

≈
� ∞

0

z2n−1

(2n − 1)!

∞∑
m=0

(−1)me−(m+1)zdz

= a>n

(4)

▶ Therefore an = a<n + a>n = 2η(2n) =
(
2− 22−2n

)
ζ(2n)

6
The derivative of a constant is 0

7
The expansion depends on an approximation that the integrand is essentially 0 when x <= −kBT0
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