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Section 1

Review of the Drude Model



Electron Gas

Metal has N fixed ions + electron gas (conduction electrons).

The electron gas consists of 1 valence electron per nucleus?.
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» The ions consist of the nucleus plus bound electrons.
» lonic charge =Z — e

>

Total charge of electron gas = Ne.
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Collision outgoing velocities are independent of ingoing velocities

1
More generally, n, valence electrons per nucleus



Collision assumptions

» Independent electron approximation
Neglect e~ — e~ interactions.
A suprisingly good approximation for many metallic phenomena

» Free electron approximation
Neglect ionic field on e™.
A poor approximation for many metallic phenomena

» Electron-ion collisions result in rapid velocity changes

v

Between collisions, electrons obey F = ma for external F = ma

» Electron probability of collision in time dt is %.

» 7 is called the relaxation time
» Electron will on average travel for 7 before next collision.
» Electron on average traveled for 7 after last collision.

» 7 is independent of electron position or velocity.
» Electrons maintain thermal equilibrium only thru collisions
» Qutgoing velocity is independent of ingoing velocity
» Outgoing velocity is tied to local temperature
» E.g. outgoing velocities are higher where local temp is higher



The Force equation and Ohm's Law

» Ohm'’s Law for constant current: V = IR
» Start with V =E - d.
> Relate V to F with F = —¢E.
» Between collisions, F = ma.
» For constant F this gives average Av = %T
» Relate / to the average drift velocity of electrons.
» Then p = -5- where p = %R.

ne2t

» Mean free path is approximately inter-ionic distance

» 7 (inferred from resistance) and ¥ imply MFP.

» Compute v from Boltzmann distribution (stat mech)

» Just a coincidence because v is wrong.
» Otherwise the molar specific heat would be much higher.
P Per-electron specific heat measured to be ~ 0
» Boltzmann dist predicts per-electron specific heat of %kT

» Just Newton's Law adjusted by probability of .collision



The Hall Effect

» Hall effect introduces magnetic field perpendicular to current.
generalized force law.
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Figure 1.3
Schematic view of Hall's experiment

» Magnetic field induces force in y — direction
» But electron-accumulation on edges keeps current in
x-direction
» So E, = pj.. Magnetism doesn’t effect resistivity!
» This was observed experimentally by Hall.

» E, = —w.pTjx = RyHjx where the Hall coefficient Ry = L

hec

» Ry is independent of 7 or other properties of the metal.

Use



Transparency

» When is a metal transparent to light?
» Method: Maxwell's equations in presence of collisions

> A radiative solution has the form E(t) = E(w)e™ ™!
» Apply generalized force law to F = eE.

» Current is proportional to momentum.
>
>

Maxwell's equations involve current.

So

w2

~V?E = Ze(w)E
where e(w) =1+ ﬁ%ﬁfi)

> Take wr >> 1.
2 2
> Then e(w) ~ 1 — 2% where wp = 20,
» wp is the "plasma frequency”
> By relationship of 7 to resistivity, wpT >> 1 for most metals
» When w < wp then e(w) < 0 and E dies exponentially
» When w > wp, E oscillates E(x) o e™'c*

» This is radiation through the wire — i.e. transparency



Section 2

Review of statistical mechanics



Postulate of Equal A Priori Probabilities — Example 1

An isolated system in equilibrium is equally likely to be in any of its
accessible states.

No restrictions on single-particle states

Table: Total of three dice adding up to 7.

No restrictions.

Die 1 | Die 2 | Die 3
1 1 5
1 5 1
1 2 4
1 4 2
1 3 3
2 1 4
2 4 1
2 2 3
2 3 2

3 dice add up to a total of 7.
15 possible configurations.

» 5 configs where the red system
is 1, so P;7(1) =5/15 = 33%.

» Similarly, P7(2) = 4/15 = 27%.
> Etc. until P7(5) =1/15 = 7%.



Postulate of Equal A Priori Probabilities — Example 2

An isolated system in equilibrium is equally likely to be in any of its
accessible states.

Restrictions: 2 particles can’t be in same single-particle state

Table: Total of three dice adding up to 7.
With restrictions.

Die 1 | Die 2 | Die 3 3 dice add up to a total of 7.
1 2 4 6 possible configurations.

; 111 i » 2 configs where the red system
2 4 1 is1,s0o P(1) =2/6 = 33%.

> Similarly, P7(2) = 2/6 = 33%.
> Py(4) = 2/6 = 33%.




Distributions

Figure: Total energy is Eiot. Total particles = Nioy.

» System B has many more states than system A.

» A and B are free to exchange energy (but not particles)
» For electron gas, assume independent and free e~ approximation
2
. . _p 1 2
» Then the single-electron energy is £ = £~ = smv

» Thermal equilibrium = Law of Equal a Priori Probability
» Thermal distributions: e~ -density distribution about v is f(v)dv



Section 3

Maxwell-Boltzmann and Fermi-Dirac
Distributions



Comparison of MB and FD distributions

» Classical mechanics = Maxwell-Boltzmann distribution

» Quantum mechanics for fermions = Fermi-Dirac distribution

» Actually, QM predicts p distribution
» We cheat by claiming p = mv

> MB: Maxwell Boltzmann (distinguishable particles)

> fusv) = n (22)" 7 (3= 2p)

»> FD: Fermi-Dirac (|ndisting. particles & Pauli exclusion)
> fep(v) = (B)

473 +eB(E k7o) (ﬁ:

inverse temperature)
» Set Ty, the Ferml temperature by f d3vf,:D(v) =n

m]

=



FD distribution at T =0
» Take T — 0.

1
3 1 3. (37%n)3
lim fFD(V) = |im (r;;) L = 4 (%) ifv S m 1 h7
B—00 B—oo 43 1+ eB(E—ksTo) 0 . (37T,2n,,)§ .
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Figure: Fermi-Dirac distribution as T — 0

» This distribution should be derivable from the QM ground state



QM ground state for electrons

» Electrons are fermions: Pauli exclusion principle
> Two electrons per momentum eigenstate — spin up,down

» Assume finite volume with periodic boundary conditions.
» Momentum eigenstates are plane waves
» Z — Vf'pF d3p
P<PF p=0 (2mh)3
» Then take N — 00,V — oo with fixed electron density n =

<z

» Compute the number of momentum-states with |p| < |p¢|.

PE d3p 4 PE 4h Vpi
= dp= —————Y 3 PR
v /,,_0 @~ @rh)y” /,,_0 PP = 3oy VPF) = Gz
» Multiply by 2 for the two spin states:

N = Y5 —s pr— (3n2n)° 7 like the FD distribution at T = 0
= 3,073 pr = (37%n)* h like the istribution at T = 0.




Section 4

O-temperature consequences



Average speed and kinetic energy

> MB d_istribution:
> vz—lfd3vfMB( ) 2—4—’Tf0°°dvfMB( ) 4:3"%7—

> Room temperature T = 300° K Then ¥ =1.2x10°m/s
> Average kinetic energy is E = 2mv = 0.04eV

» FD distribution: See the figure. (would be similar for T = 0)
» Define vg = \/2kg To/m. Then 2mv,,: = kg Tp.

> frp & (4 2 if v > vr otherwise fgp =~ 0, for T of room temp.

3
» Then n= 47r£4—7r3l Jodw? = 47r%3l335 = vp = (3nr?)3 L

» Copper: n~ 2.8x10%2/cm®. Then Tp = 8.1x10%°K
» 21 d3 f; —4 ( 2 dv 3h 7T 9 %
V2= [ il (v)v? = dnyls fo wh (9n*r)

> Copper: v =1.2x10°m/s.
> Average kinetic energy is E = mv = 7.0eV

2 _ /= . . T .
It's common, but wrong, to say that ¥ = V' v2, but for highly-peaked dists:, the approximation is valid.



Mean free path

v

» Also recall that 7 is related to the resistivity p by 7 = 7.

Recall the mean free path is £ = vr.

P
» For Cu, p = 1.7 micro-ohm centimeters so 7 = 2.571* secs.

» MB: MFP = vr =2.5x10~!*s x 1.2x10°m/s = 30A
» FD: MFP = vr = 2.5x101%s x 1.2x10°m/s = 300A

» The classical theory predicts a MFP about 10 times the copper

inter-ionic distance, which is larger than we'd expect. But the
quantum theory predicts a MFP 100 times the copper inter-ionic
distance.

QM cannot predict x and v simultaneously, so it's generally not
possible to compute (or even talk about) a MFP obtained using
electron speeds. Sommerfeld’s theory blends QM and classical
arguments. Ashcroft and Mermin discuss the justification.



Specific Heat — the lowest order approximation

» The constant-volume specific heat of the electron gas ¢y = %.

» Comparing the FD distribution figures above at T = 300°K and
below at T = 0°K we see that E is ~ T-independent.

» So, for the FD distribution (quantum), cy ~ 0
» In good agreement with experiment

> For the MB distribution we obtained £ ~ 3k T.

> So, for the MB distribution (classical), cy ~ 3kg
» Disagrees completely with experiment

» For higher order approximations, perform a temperature-expansion.
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Specific Heat at non-zero temperature



Mean values at non-zero temperature

» Write energy E as E(v) and define3 fep(E)dE = fep(v)d3v.

» Then
fro(E) = g(E)f(E)
where g(E) = V:Z%’?a and f(E) = —& .
1+e *BT

> The average of P(E) is then P = [ [P(E)g(E)] f(E)dE.

3. . . . .
This is an abuse of notation. Should use a different function name.



The Sommerfeld expansion part |

P Integrate by parts

B

/oo K(E)f'(E)dE

where K(E) = fOE [P(E")g(E")] dE’ (antiderivative)
» f’ spikes around kg Ty so Taylor-expand K around E = kg Ty.

f=1/(1+exp(E-1)/100))

wwwwwwwwwwwww

Axis Title

» f'(E — kg Ty) is even, so only keep even terms of K's expansion

5o _ (E — kBTo)zf d¥ K(E)
o dE2i

f'(E)dE (1)
E—kgTo



The Sommerfeld expansion part |l

» This expansion can be manipulated* to

ke To o i1
P [ pEsEN S e EOSE

j=1 E=kgTo

where a; = (2 — 5 ¢(2))
» That is the Sommerfeld Expansion.

4
For details, see Appendix C (The Sommerfeld Expansion) of Ashcroft and:Mermin



To

» Find To by setting P(E) =1 so P = n. Recall g(E) =
ke To
n _/ (E)dE + a(ks T)e'(E)
0 E=ksTo
V8m?3 3 2
= 3m2hK3 (kBTO)2 1"‘311 <T0>

> Solve for To with ansatz To = kga (1+b(2)"+...)

» Rewrite, and eventually substitute a; = 2~

6
3
2

o 52 (o0 (Z) ) (s

_ VBm® (kga)? <1 + <§)2 <3b Fas

2 4

> kBa— (37r n)3 2




E and ¢y
2Em3

» From the Sommerfeld expansion, and again using g(E) = *55

+ ...
E=kgTo

+ )

_ ks To
E :/0 Eg(E)dE + a1(ks T)X(Eg)'(E)

V8m?3 5 T
=——(kgTp)2 |1 — [ =
p 5 To) +a14 (To

T ket
VEgT T T, (3)

> At very low temps, the conduction-electron contribution to cy is
dominant. Alkali metals agree with experiment.
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Appendix on the derivation of a, in the
Sommerfeld Expansion



Derivation |

» By changing variables in Eq. (1) Ashcroft and Mermin derive

0o X2n
e [T 2
o, @)\ T4 e

» They say that “by elementary manipulations” a,

» Here are the elementary manipulations.

» First, integrate by parts for x > 0.

= () (

B /om <<2Xn2n—_l)!> (

1 —X 1 _ —XOO —X
1+eX:e 1+e*X_e Z(—e )

m=0

(2= =) ¢(2n)

) o
) o

o0

Z(_l)me—(m+1)x

m=0



Derivation I

» Change variables to y = (m + 1)x so x®?"Vdx = ﬁy(z”_l)dy.

» Then

» In general,

—Zdz = (—1 —az g
/0 ze7?dz = (—1) —dak/o e z

> So

» This sum is known as the Dirichlet 7 function 7(2n).




Derivation Il

n /
> Next integrate by parts a; = —f_OkBTO (gi)! (H%) dx
0 XZn /

> Note® a5 = — [7, . & (?ZX - 1) dx

0 2n—1 2 0

1 n 1
% L (e ) o (G (e )
r, @n— DI\ T e 2n) \11 e -

» The last term can be dropped if kg Ty is large enough.”

» Change variables x = —z, expand7 -1

1+€‘_Z

ks To 2n— 1 L
~ * o qyma—(mt1)z (4)
/0 on = 1)! Z( 1)me dz
m=0

>
n

» Therefore a, = a5 + a; = 2n(2n) = (2 - 2272”) ¢(2n)

= a

6 - .
The derivative of a constant is 0

The expansion depends on an approximation that the integrand is essentially 0 when x <= —kg Ty
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