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Section 1

Crystals



Improving on the free electron approximation

» Drude and Sommerfeld models use free electron approximation
Neglect the ionic field on e~

» There are significant prediction-modifications if we include that field
» Assume (for now) that ions form a perfect static crystal structure

» Ashcroft and Mermin chapters 4,5, 7 classify all such crystals
» | will focus on SCC (simple cubic) configs

» (For now) look at predictions only dependent on crystal structure

» Most other details of the ion-e~ potential won't matter



Bravais lattice and primitive vectors

» A Bravais lattice consists of points R = nia; + mya, + nsas

» n; are integers

» a; are three independent vectors called primitive vectors
» R is a Bravais vector

» a; span or generate the lattice

» Example: Simple cubic (SC) lattice
a; = (1,0,0),a; = (0,1,0),a3 = (0,0,1)

Simple cubic Bravais lattice

» The coordination number is # of nearest-neighbors of any point.

» On an SCC, the coordination number is 6.



Cells

Cells are spacial regions. Space can be filled by non-overlapping regions
that are translations of cells by a subset of Bravais vectors.

» primitive (unit) cell: One lattice point per cell
» (conventional) unit cell: Cell has same symmetry as lattice

» Wigner-Seitz cell: Primitive cell with same symmetry as lattice
The Wigner-Seitz cell about a lattice point is the region of space that is closer to that point than to any
other lattice point

sim ple cubic

Simple cubic Wigner Seitz cell



Crystal structures a.k.a lattices with bases
Crystal: Each copy of primitive cell has identical collection of ions

» Crystal structure locations are given by the /attice basis ¢/

» lons are located at nja; + may + nsas + o
» In general, there could be different species of ions at different j

> Examples starting with the SC Bravais lattice (n1, np, n3)

» Monatomic SC crystal: ¢! = 0.
> Body-centered cubic crystal: ¢! =0,¢2 = (1,1, 1)

Body-centered crystal structure



Example Bravais lattices

(a) Bravais lattice

(b) Wigner Seitz cell
Body-centered cubic

(a) Bravais lattice

(b) Wigner Seitz cell
Face-centered cubic




Reciprocal lattice

The reciprocal lattice is the set of K with e/K(+R) — o/ for 3|l ¢ and
for every Bravais vector R.

>

eiK-R =1

iK-r

> " are plane waves with periodicity of the (direct) Bravais lattice

» |t can be proven that the reciprocal lattice is a Bravais lattice with

generators b; (Ashcroft and Mermin Chptr 5)

» Also, the reciprocal of the reciprocal lattice is the direct lattice.

» Example 1 Reciprocal lattice of SC is SC.

» Example 2 Reciprocal lattice of BCC is FCC (and vice versa)

3
If v is the volume of a primitive cell of the direct lattice, then (23)

is the volume of a primitive cell of the reciprocal lattice.

Wigner Seitz cell of reciprocal lattice is called the first Brillouin zone



Section 2

Electron Levels in a Periodic Potential



The periodic potential
See Ashcroft and Mermin Chapter 8.

Figure 8.1

A typical crystalline periodic
potential, plotted along a line
ofions and along a line mid-
way between a plane of ions.
(Closed circles are the equi-
librium ion sites; the solid
curves give the potential
along the line of ions; the
dotted curves give the poten-
tial aleng a line between
planes of ions; the dashed
curves give the potential of
single isolated ions.)

We will examine single-electron Hamiltonians with the form

R _,
HP'IZJ = (—2mV + U(r)) ’(/J

where U(r) is the periodic potential of an ionic crystal.

Of particular interest are the eigensolutions Hpt) = E1.



Subsection 1

A brief introduction to bands



The 1D Schrodinger theory in a periodic potential

| realized after our meeting of March 17, that there was a more
streamlined story about the origin of bands. I'll cover this now, and the
later subsections are the ones discussed on March 17.

» The 1D single-electron Hamiltonian is

h? d?

» The energy levels are values of E for eigensolutions
Hy = Ev

» Version of Bloch's theorem.

> When U is periodic with period “a”, there is a k so that
Ynk(x) = € un(x) (1)

where U (x + a) = upk(x) and |k| < K/2, where K = 7/ a.
» We'll call this the canonical form



Note that when U = 0, it is periodic for any value of a.

» Eigensolutions are 1, = \/%e”‘x and ) = \/%e_”‘x
R d? 1 ;
H __ = +ikx
wi 2m dx? <\/2ﬂ'e > (2)
_ h2k2 < 1 e:tikx) —E w
= om o =Ery
K

» So the energy eigenvalues are E. = 5.



Standard form

Finite segment of the graph for |k| < 3K

n=1 ——

k

2K

3K



Canonical form

Plot of E(k) for Different Values of n

k

) . _n—1[n
k) = P (x) where (27) e (x) = & (0D [8]H)x
upy is periodic.

First Brillouin zone

u(x 4+ R) = ei(sgn(k)(fl)”*l [4]%)x+R) ef(sgn(k)(fl)”*l [g}K)xei(sgn(k)(A)"*l [4]x)r

_ ei(sgn(k)(—l)"71 [%}K)x

X 1= upk(x)

In the equations above, note the floor function [ x ].



Homework exercise
Show that the canonical form leads to the above graph. Hints:

» First consider n = 1, and derive 9yx.
» Then apply the Hamiltonian operator to 1, and show that
h2k?
Hiprk = 5 -1k

» Since this is of the form Hvix = Ew1, say what the energy is as a
function of k.

» Compare to the standard form when |k| < g — the lower half of the
blue section

> Now set n = 2 and derive .

» Apply the Hamiltonian operator and, as before, derive the energy as
a function of k.

» Compare the upper blue graph (in the canonical form) to the
standard form — but when £ < |k| < K.

» Pick some other random n (less than 5) to see how the rest of the
graph works.



Subsection 2

Bloch's theorem



Statement of Bloch's theorem

Bloch's theorem is proven (2 ways) in Ashcroft and Mermin.

Bloch's theorem states that all eigenfunctions of Hp have the form
Gk (r) = €™ upe(r)

where un(r + R) = u(r) for all Bravais vectors R

» Note that u,k has the periodicity of the Bravais lattice
» The index n is called the band index

» As it turns out, for each allowed k there are many solutions.

» Bloch's theorem is equivalent to this: The eigenstates of Hp can be
chosen so that associated with each 1) is a wave vector k such that

Y(r+ R) = e’k'Rz/;(r)

for every Bravais vector R.



Born-Von Karman boundary conditions

v

A free e™ in unbounded volume has a continuum of energy levels

v

In nature, and for math simplicity, put e~ in finite volume.

> Set periodic boundary conditions (for math simplicity) on sites
» There can be multiple electrons per site
» Obtain discrete levels

» Crystal symmetry bdry conditions — Born-Von Karman

> Pick Ny, N>, N3 so N = N;N>Ns is total number of sites

> Require (r + N;a;) = ¥(r) for i = 1,3; primitive vectors a;.

> With Block's theorem, this forces k = Z?:l %’b; for ints m;

» There are N allowed wavelengths per primitive reciprocal cell.

» |t can be shown that Ak = (23)3 is the volume of k-space per

allowed value of k.

» Same as for free electron.



Some remarks on periodicity and band structure

» We can restrict k to the first Brillouin zone. Proof follows:

>

vVvyyvyyYy

vVvyyvyy

>

We want to show that if ¥« is an eigenfunction, then it equals
an eigenfunction ¥,/ where k’ is in the first Brillouin zone.

If k isn't in the first Brillouin zone, pick K so k+K is.

T/)nk(r) — eik'rukn(r) _ ei(k+K).r (e—iK~rukn(r))

Let va(r) = e " un(r)

Since e®'R =1 and since uy, is periodic, then

Vo(r+R) = e Ry (r4R) = e T Uen(r) = vin(r)

Therefore we've shown that 1), (r) = e <+K)ry, (r).
By assumption v, is an eigenfunction.

It is expressed as e/(**¥)" times a periodic function.
Set k' = k+K

So we can express this eigenfunction as ¥,. QED

» Since the index “n” is an arbitrary designation of distinct
eigenvalues, we can, using notation from the above proof, relabel n’
to n when k is in the first Brillouin zone. Then ¥k = ¥n4k)-

» From Schrodinger's equation, 1 is continuous in k so by
periodicity, the eigenvalues are bounded in k hence “energy bands”.



Subsection 3

lonic potential U ~ 0



Setup

This follows Ashcroft and Mermin Chapter 9.
Start with a 1D system with U = 0. Each electron is free.

> Eigenfunctions are 11 (x) = o 1)% e and 1p(x) = (2;)% e ihx

» For each k, the energy is h k

» Let K be a primitive vector (|.e., K = (K)) of the reciprocal lattice.



Bloch decompositions |

9
n=1
8r Finite segment of the graph for |k| < 3K
7t
6
sk
3
4
3b
oF
e
o . . . . .
-3K 2K K 0 K 2K 3K
k
a ikx  a 3 a
i (x) = ™ uf, (x) where (27)2 uf,(x) =1
AN Showing 3 bands and limitng ko [ < K
e
* o «

b (x) = €™ ub, (x) where (27r)% b (x) = ltan(i)(n=1)K)x

ugk is periodic.

b x4+ R) = cilsgn(K)(n—1K)(+R) _ gilsgn(k)(n—1)K)x jilsgn(k)(n—1)K)R _ gifsgn(k)(nr-DK)x— 1 — a8.(x)



Bloch decompositions I

Plot of E(k) for Different Values of n

k2 K2
k
i 3 i(sen(k)(—1)" 2]k
£,00 = €S, (x) where (2m)3 uS, (x) = o (san((=1)" "2 [5]K)x
uf, is periodic.

First Brillouin zone

Wy (x4 R) = ei(sgn(k)(—l)"71 [%}K)()H»R) _ ei(sgn(k)(—l)”71 [g}K)xei<sgn(k)(—l)"71 [g}K)R

_ ei(sgn(k)(—l)"71 [%}K)x

X 1= ug(x)

In the equations above, note the floor function [ = ].



Fermi surface

The Fermi surface is the surface of smallest energy Er such that all
low-temperature electrons have an energy less than Ef.

> Eg. set number of sites = number of electrons to N = 50.
» Use Born-von Karman boundary conditions.

» So there are 50 permitted wavelengths in the first Brillouin zone.

Plot of E(K) for Different Values of n

50 electrons in their ground state, populating first level up to a Fermi energy shown as a horizontal purple line

» In this example, the first band is completely occupied.



U small but nonzero

» Since U is small, use a perturbation expansion from free case.

» 1D case from Ashcroft and Mirman

(6]

Fig. () corresponds to %7, Fig. (f) corresponds to ¢,

» Note the band gap (large band gap = insulator)
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